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ABSTRACT

Means for predicting the fluctuating pressures acting on
externally blown flap surfaces are developed on the basis of
generalizations derived from non-dimensionalized empirical data.
Approaches for estimation of the fatigue lives of skin-stringer
and honeycomb-core sandwich flap structures are derived from
vibration response analyses and panel fatigue data. Approximate
expressions for fluctuating pressures, structural response, and
fatigue life are combined to reveal the important parametric de-
pendences.

The two-dimensional equations of motion of multi-element
flap systems are derived in general form, so that they can be
specialized readily for any particular system. An introduction
is presented of an approach to characterizing the excltation
pressures and structural responses which makes use of space-
time spectral density concepts and promises to provide useful
insights, as well as experimental and analytlical savings.
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EXCITATION, RESPONSE, AND FATIGUE LIFE ESTIMATION METHODS 7/;>
FOR THE STRUCTURAL DESIGN OF EXTERNALLY BLOWW FLAPS

INTRODUCTION

Short take-off and landing (STOL) aircraft concepts hAave been
attracting much attention in the past several years, because
of their potential operational advantages over more conventional
aircraft. Of the several STOL configurations that have been
given very serious consideration, those incorporating "externaily
blown" flaps (e.g., see Fig. 1) have recently found increasing
favor, and EBF aircraft technology currently Is the subject of
extensive study and evaluation.

Because the flaps of EBF aircrzft are exposed to the direct
impingement of the engine exhaust streams, as well as to the in-
tense noise field that exists near the engines, the effects of
the associated fluctuating pressures must be taken into account
in the design of the flap structures, These effects are primarily
of two kinds: (1) "sonic" fatigue of the flap airfoil structures,
and (2) severe overall vibrations of the flap elements, with the
associated high oscillatory loads in the structures (and actua-
tors) that interconnect and support the flap elements. The pre-
sent report is intended to provide some preliminary analytical
approaches to assessing these effects, to revealing the import-
ant parameters, and to suggesting improved approaches.

The Sonic Fatigue Problem

The complex problems of sonic fatigue 1life prediction and
corresponding structural design fortunately may Dbe simplified
by considering them in terms of a sequence of sub-problems.
These sub-problems consist of: (1) characterization of the fluc-
tuating pressure excitation, (2) determination of the structural
responses to this excitation, (3) evaluation of the most signifi-
cant associated oscillatory stresses, and (4) estimation of the
corresponding fatigue life.



FLUCTUATING PRESSURES ON EBF SURFACES

Jet Configuration

At several core-nozzle diameters aft of the nozzle exit
plane, the flow field produced by fan-jet engines appears to
be dominated by that due to the core jet (see Appendix A).
It is reasonable therefore to estimate the fluctuating pres-
sures produced by the exhaust from a fan-jet engine on the
basis of the pressures associated with the core jet, and to
make use of the extensive information available concerning
ideal circular jets.

The configuration of an ideal circular Jet 1s sketched
in Fig. 2. This shows a converging conical '"potential flow
region", surrounded by a diverging concial "mixing region”.
The total angle 20 subtended by the Jjet boundary typlcally
is between 25 and 30 degrees (Ref. 3). The length of the
potential core is given (Ref. 2) by

X, = 3.45 D(1 + 0.38 M)* , (1)

where D denotes the diameter of the (engine core) nozzle and
M represents the Mach number of the exhaust stream.

Velocity Fluctuations in Jets

For estimation purposes it is also convenient to assume
that the velocity fluctuations that are present in the jet in
absence of an inserted flap are not altered substantially in
the presence of the flap, and one may then interpret availlable
velocity fluctuation data in terms of the pressure fluctuation
information one requires. Figure 3 indicates how the axial

turbulence intensity
- o2
I -‘JE-760 (2)



Characterization of the fluctuating pressures on EBF sur-
faces for design and estimation purposes is summarized in the
first of the following sections and 1s discussed in some detail
in Appendix A. The next of the major sections of thils report
deals with estimation of structural responses, of the associated
stresses, and of the fatigue 1life of EBF structures (based on
previously published information and on extensions of previously
employed approaches), both for skin-stringer and for honeycomb-
core sandwich structures. The assumptions underlying these es-
timations, and their limitations, are also pointed out in these
sections; a general,potentially extremely useful, approach toward
characterizing the excitations and estimating responses is des-
cribed in Appendix D.

The Buffeting Problem

This problem, which tends to be most significant at fre-
guencies that are substantially lower than those of primary
importance for sonic fatigue, also may be considered in terms
of a sequence of sub-problems, namely: (1) characterization of
the excitation, (2) determination of the associated vibratory
responses, (3) evaluation of the most significant deflections
and substructural loads, and (4) evaluation of these oscilla-
tions, deflections, and loads in terms of ride guality and sub-
structural design requirements.

In contrast to the treatment of the sonic fatigue problem,
this report deals with the buffeting problem in only a very
preliminary manner. The final major section of this report
presents the two-dimensional equations of motion of a general
EBF system, in which the airfoil components are considered as
rigid bodies interconnected by linear springs. These equations
display the important parameters and provide a basis for carry-
ing out natural-frequency and response calculations for specific
EBF designs.



FATIGUE LIFE OF SKIN-STRINGER STRUCTURES

Overview of Estimation Approach

Conventional aireraft structures consist of skins, rein-
forced by stringers, frames, and bulkheads (Fig. 7). Fluctu-
ating pressures acting on the skins tend to induce complex
vibratory deflections in the entire assembly, resulting in
assoclated stresses, which — in turn — lead to structural
fatigue.

Because of the complexities of the excltations and re-
sponses, currently avallable "sonic fatigue" design methods*
are based on analyses developed on the basis of simplifying
assumptions, coupled with empirically derived relations, These
analyses in essence focus on one bay (i.e.,, one skin panel) at
a time, ignore the complex spatial and temporal distribution
of the exciting pressure by assuming the pressure always to be
completely in phase over the entire panel, and compute the
mean-square displacement response of the panel (mode by mode)
to this spatially uniform, but tlme-wlse random, pressure,liey
then calculate the maximum stresses from the panel modal dis-
placements, and finally relate these calculated stresses to ex-
perimentally measured stresses and fatlgue data.

The panel boundary conditions clearly play an important
role; they not only affect the natural frequencies of the pan-
el (which determine the parts of the excitation spectrum that
dominate the response), but also the mode-shapes and therefore
the relation between modal deflection and stress. Thus, pre-
vious investigators have expended considerable effort on meth-
ods for predicting the natural frequencles.

In dealing with the panel responses and stresses, the rein-
forcing structures (i.e., stringers and frames) are conslidered
essentially only as boundary conditions., They are in effect as-
sumed to deflect very little — an assumption that is likely to

¥Although these methods were developed to cope with the
problem of fatigue induced by acoustic excitation, they may be
expected also to be applicable (at least approximately) in many
other cases of fluctuating-pressure excitation, including gener-
ally that due to impinging jets and tangential flows., In all
cases, of course, the quality of the estimate depends on how
well the actual situation matches the various underlying assump-
tions.

11



In view of Egs. (7) and (17), then,

2Tf * Hz
L =1L.. + 10 log ————
S OA 1 + T?wz

(22)

Making use of Eq.

(8), one may find the peak spectrum level,
corresponding to ¢

max? to be giliven by

U
_ X 0
Ls,peak = Ly, *+ 10 log (X )-10 log (U ) +C, (23)
ref ref
with
0.2 X g Hz
C, =10 log é ¥ - 25,7 dB , (24)
ref
where X

£ represents a reference axial distance., To arrive at
the abové numerical value for C,, Xper was taken as 10 ft, and
the previously cited value of Up = 750 ft/sec was used, By
combining Eas.(20), (23), and (2E§ one finds

UO X TO + 460
Ls,peak x 152 + 30 log Tz + 10 log 7 -20 log —&z5— (25)

One similarly finds that the high-freguency spectrum level,
corresponding to the high-frequency approximation ®h‘

fre (f) of
Eq. (16), 1s given by q
U
L. 11 rreq = Loa* 10 log(U S )-10 log(XX ) -20 1og(ff') +C, ,
> q ref ref ref
(26)
where
Uref - Hz
c, = 10 log ~ - 24 dB (27)
0.2n% X_ .f?
ref ref



With this value of I, Egs. (5) and (6) reduce to
Tz 2y2,
p (0.24 oOUO) ; (13)

this then may be used to estimate the pressures on surfaces on
which a jet impinges normally.

From Figs. 5 and 6 one may similarly deduce that for sur-

faces on which jets impinge more nearly tangentially, p?/q<0.12,
so that for conservative estimation purposes one may take

p? = (0.12 @)% = (0.06 p _U2)? . (14)

Clearly, the assumption of normal incidence leads to mean-
square pressures that are higher by a factor of 16 than the
pressures one obtains for more tangential inciderce, and struc-
tures that can withstand the normal incidence pressures for a
given period may be expected in general to survive the tangen-
tial incidence pressures for a longer period.

Pressure spectrum (spectral density). — The freguency
spectral density ¢p(w7 of the fluctuating pressures, for both
the normal and tangential incidence cases, as has been stated,
is given by Egs. (7) and (8). The maximum value of the spec-
tral density, which value is obtained for Tpew << 1, obeys

= 2 = —_2_ = 2 3
¢max(f) 2ptT D 0.0115 Xp U (15)

where the last expression has been obtained by substitution of
Eg. (13).

For high frequencies, on the other hand, — that is, for
Tew >> 1, — Egs. (7), (8), and (13) yield
— U 5’2— OZUS
2
o, . (£) = P = ° = 0,029 =2 (16)
hi freq on?T_£2 0,2m2Xf? X2

f

where f = w/21 denotes the cyclic frequency.



a=35pe,Us% 350U (6)

represents the dynamic pressure at the exit,

The frequency-spectral density ¢.(w) of the fluctuating
pressure is shown in Appendix A to be of the same form as that
of the fluctuating velocity component, and to obey*¥

— T./7
z L (7)

kol

1
o (w) = 5= & (f) » p? ——r
o) 7 tptF) 1+ Tie?

where T. represents a typical time scale (or inverse frequency)
of the pressure or velocity fluctuations and obeys

T, 0.1 X/U_ , (8)

and where w denotes the radian frecguency.

From Appendix A one also finds that the pressure cross-

correlation function ¢p o (s,7) for two points on the flap
122
surface near the jet axis, separated by a distance s, obeys

¢p 0 (s,1) = ET e_s/L e—lTl/Tf (9)
142

where L denotes a length scale, called the correlation length,
and is given by

L = 0.025 X . (10)

Near-Tangentially Impinging Jets. — For flap surfaces along
which the engine exhaust flows essentially tangentially, the
assumption of momentum flux annihilation would tend to overesti-
mate the mean-square fluctuating pressure, From Figs. 5 and 6,

¥The spectral density @D(w) represents the mean-sguare
pressure per rad/sec, whereas the spectral density ¢ (f), ex-
pressed in cyclic rather than radian frequency, represents the
mean-square pressure per Hertz,
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ILLUSTRATIVE IDEALIZED FLAP SYSTEM,
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[COORDINATES: (Xqn: Yon)]

nTH FLAP IN
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FIG.

t2

1.

EXTERNALLY-BLOWN~FLAP STOL AIRPLANE (FROM REF.

1).
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corresponds to an intersection of the kb(w) curve, which is a
plot of Eg. (6), with the w = w;line. Obviously, one may expect
the product (integrand) to exhibit a very strong peak 1f the
peaks of the factor functions coincide. The two frequencies at
which this condition can occur are readily identifiable in the
diagram: (1) at w,, for which ky = ko, the admittance peak occurs

at the same location as the Jet nolse peak. (2) At wy, for which

kb = kH’ the admittance peak occurs at the same wavenumber as the

turbulent flow peak.

Stresses. — Since the roct-mean-square strain in a uniform
beam or plate is very nearly equal to the ratio of the root-mean-
square velocity to the longitudinal wave veloclty in the material,
calculation of the rms strain is a simple matter once one knows
the mean-square velocity. Of course, one then merely needs to
apply Hooke's law to obtain the rms stress.

Methods are also avallable that permit one to account for
the stress increases at boundaries, supports, or reinforcements.
Determination of the motions of supporting structures (e.g., of
plate ribs or frames) and of the associated stresses involves
additional calculations, which often can be formulated in rela-
tively simple terms.
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The (space and time) Fourier transform of Eq. (4), when
written in terms of the velocity v instead of the displacement
y, may be shown tc be

(k* - kg)v = Plk,w) , (5)

where k and w represent the wavenumber and radian frequency
(which replace x and t as a result of the Fourier transform
process) and p(k,w) represents the Fourier transform of p(x,t)
— 1.e., the spectral pressure amplitude. The wavenumber ki
obeys

kg = w?m/B (6)

and is that wavenumber at which free bending waves travel with-
out dimunition (in the absence of damping).

The admittance Y is defined as the ratio of the spectral
velocity to the spectral pressure; for the bLeam under consider-
ation here one finds

k1!
Y(k,w) = — = | wm (1 - -—) . (7)
K.L*
¢]

oo

As evident from this equation or from the sketcii of thls func-
tion appearing in Fig. 21, the admittance has a sharp peak at
k = Kp. In fact, this peak rises to 1Infinity for undampea
systems, buf remains finite for realistic structures that al-
ways have some damping.

Admittances of Other Structures. — Equation (7) probably
represents the simplest admittance function of practical in-
terest. However, expressions are also availlable for the ad-
mittances of beams with uniformly spaced masses attacned, or
of one-dimensional plates with uniformly spaced rivs. These
expressions are more complicated than that for a uniform beam,
but are no different in concept.

For two-dimensional structures, the admittance functions
involve two wavenumbers, corresponding to Fourier transforma-
tions on the two spatial coordinates, but otherwise again do
not differ in concept from the simple beam admittance,

Tl



o(k,w) = |B(k,w)|? L-1o=1 (3)

where L and T, respectively, denote the spatial interval (here,
in one dimension for this introductory one-dimensional discus-
sion) and the time interval over which the pressures are sampled.

surface Pressures in Turbulent Flow. — Figure 19 indicates
schematically the typical behavior of the pressure spectral den-
sity o(k,w) associated with turbulent flow along a surface, If
one considers the curves of constant spectral density as "contour
lines" in the k,w plane, one notes that the ¢ nill has a ridge
along a line whose slope is w/k = Uy, where Uy represents the
speed of the flow along the surface. For blown flap surfaces,
Uw generally is considerably less than the speed of sound Cos a8
also indicated in the figure.

All points on the w = kU, line represent energy travelling
at the speed of the flow. If all of the energy would travel at
the flow speed, — i.e., if the turbulence were "Trozen" into
the flow and would convect at the flow speed — the contour lines
would collapse into the Ue line. The spread of the contour
lines about this line reflects the "unfrozen" nature of boundary
flow, — 1.e., the presence of a distribution of components tra-
velling with different speeds,

At any particular frequency w;, the component that travels
with the speed of the flow has a certain wavenumber Kigo This is
called the nydrodynamic wavenumber at that fregquency, and it is
the wavenumber at which there exists the greatest fluctuating-
pressure energy at that frequency. Similarly, the component at
w; that travels with the speed of sound has a wavenumber x,, the
acoustic wavenumber. Sound waves travelling (at grazing inci-
dence) along the surface correspond to the Cq line of the figure,.

The lower part of Fig. 19 shows a "slice" taxen through the
uprer plot at the constant frequency w,. The peak in the spec-
tral density at the hydrodynamic wavenumber Ky again displays
the fact that most of the energy travels at the speed of the
flow. It 1s Important to observe, however, that significant
amounts of energy also travel at other speeds, particularly at
speeds near Us. Indeed, the fact that ¢(w,,k) is finite for a
range of values of k below k5 indicates that some energy travels
at speeds greater than the sound speed.
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first of these functions is known to acousticians (and to radar
and sonar engineers) as the directivity pattern of the source

of excitation; it represents the spectral density of the sur-
face pressures. The function representing the structural stiff-
ness is known to structural dynamicists as the surface (spectral)
admittance of the structure, and to acousticians as 1its array re-
ceiving pattern., The avallable physical understanding of these
functions should facilitate direction and evaluation of research
and design programs. Since only integrals of products of func-
tions are required, only minimal computational difficulty 1s in-
volved.

Experimental Savings and Accuracy Gain. — With the S7USD ap-
proach, the (spatial) spectral density of fluctuating pressures
acting on a structural surface may be measured by means of an
array of pressure sensors flush-mounted on the surface; the out-
puts «f all of the (spatially distributed) sensors are sampled
simultaneously and recorded. The records are later digitized
and entered into a digital computer for calculation of the spec-
tral densities. Only one experimental run is needed for each set
of independent variables,.

Alternate approaches to representing surface loads in es-
sence reguire the repositioning of pairs of transducers zand many
repetitive runs for each set of independent varliavles. The re-
corded sensor outputs from all such runs typlcally are cross-
correlated for a range of time delays, leading to space-time
cross-correlation functions. Because data from different runs
are obtained and analyzed separately in these approaches, loss of
accuracy results due to random experimental errors. The STSD
approach, on the othier nand, is based on a single run — not
only reducing this source of errors drastically, out also lead-
ing to a considerable saving in run time.

Extensions. — 7The 23TSD apprcach 1s 1deally suited for
dealing withn the responses of surface (e.g., skin) structures
to spatially homogeneous excitation, Where the responses of

interior or supporting structures (e.g., ribs, stringers) are
of interest, these may be expected to be determined relatively
simply from the surface structural responses,

As the spatial inhomogeneilties of tihe excliting pressure

field and of tne structure increase, thne (TSD descriptions re-
quired to provide sufficient accuracy become more compliex., In
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TABLE C-1I.

— FATIGUE LIFE CORRECTION

FACTORS FOR ALUMINUM ALLCYS

*®
W
n .
o Correction Factor, km
. )
v +- -
° “ 2
© P 0 U: g 8
— + O Vs ) o™ — - @
>> unwv b—l- — x [ [ = °
1 ] SO
_ L T T S I
o a o 2 E ,‘3 S o e £ ;"\
: QEJ g:‘) 4;:2 2 ? > — “n (S} j
= & 2 P25 By Iy & a » Ea 2
2014 6 66 1.00 2.00 1.00 1.00 1.00 130.
Clad 2014 T6 57 15 0.75 0.87 1.75 0.27 0.4€ 0.31 52.
2024 T4? 39 0.59 1.17 0.088 c.24 0.12 3.0
" T3 4g 18 0.90 0.68 1.37 0.62 0.75 C.65 a9,
" TY 43 0.65 1.30 0,14 0.31 0.17 6.3
" 736 56 19 0.95 0.85 1.70 0.75 0.87 c.81 bz
Clad 2024 T3 42 13 0.65 0.64 1.27 0.1t 0.31 0.17 5.4
" 736 52 13 0.65 0.79 1.57 0.14 .31 0.17 2L,
" Y 40 0.61 1.21 0.10 0.26 0.13 3.9
" Th2 35 0.53 1.06 0.050 0.17 0,082 1.51
" T6 ur 0.71 1,42 0.21 0.39 G.25 11.8
" T81 55 13 0.65 0.83 1.67 0.14 0.31 0.17 37.
" 786 63 3 0.65 0.05 1.91 0.1k 0.31 .17 95,
5052 132 20 0.30 0.61 0.0040 0.037 0.0075 0.07%1
" H34 23 0.35 0.70 0.0080 0,056 0.0020 0.081
" H36 29 0.44 0.88 0.023 0.106 0.036 0.41
" H38 33 0.50 1.00 0.041 ¢.15 0.660C 1.00
6061 Ty 1€ 0.24 O.ug 0.0014 0.021 0.0030 0.Co57
" 76 35 13 0.65 0.53 1.06 0.14 0.31 0.17 1.81
7075 TE 66 20 1.00 1.00 2.00 1.00 1.00 1.00 130.
Ciad 7075 TE 62 1 0.65 0.94 1.88 0.14 0.31 0.17 85
7079 e 66 1.00 2.00 1.00 1.00 1.00 130.
7178 TE 73 1.11 2.21 1.62 1.33 1.53 270
Clad 7178 T 68 1.03 2.06 1.15 1.08 1.12 163
5083 0 18 0.27 0.55 0.0024 0.028 0.0050 G.015
" H113 29 0.4y 0.88 c.023 0.106 0.036 0.41
5086 H32 27 0.41 0.82 0.016 0.089 a.027 0,25
" H3u 33 0.50 1.00 0.0H41 0.15 0.060 1.00
" H36 37 0.56 1.12 0.070 0.205 0.00% 2.2
5454 H32 26 0.39 0.79 0.013 0.07k 0.022 .18
" H34 29 0.44 0.88 0.023 C.106 0.036 .41
5456 0 19 0.29 0.58 0.0034 0.034 0.0066 0.022
" Helb 38 0.58 1.15 0.082 6.225 0.110 2.7
¥Average value for thin sheet specimens, Ref. 34,

+Completely reversed flexural stress that flat specimens can endure for
From Table 3.3.1{(¢c), Ref.

68

34,




take the endurance limit as the fatigue stress. Aluminum alloys
do not have endurance limits, in general (Refs. 34 and 35); for
such alloys one needs to define S as corresponding to any fixed
number of cycles, say N = 10°.

Correction for Fatigue Stress. — If one summarizes Eqs. (45),

(52), (71) and (75), as

N = B(o,/0 LN (2)

ref

then one may write

E (%)_1/8 (3)

and, introducing Eq. (1),

(4)

Then, the number N of cycles that material 2 can withstand 1is
found to obey

s \7B (5 -
N—B(G ) g =Ntk (5)
ref 1
where N, denotes the number of cycles one calculates for the
basic material — i.e., by use of Eq. (2) — and
- B8
k= (5,/8)) (6)

is a correction factor that accounts for differences in the
material's fatigue properties.

Since the fatigue 1life is proportional to the number of
cycles to failure, one may obtain the fatigue life of a struc-
tural component of any aluminum alloy by multiplying the 1ife
one calculates for that component on the basis of Egs. (4s),
(52), (71), (75), by the appropriate correction factor kp, as
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where E represents the modulus of elasticity of the skin material.
The shear stress 1in the core obeys

|

Thus, the maximum shear stress Thax? which may be seen to occur at

| to

B
= [ t -
{ Gw = - 3 W] =

s

)3 W, cos(i%) . (11)

the ends of the beam, is related to the maximum skin stress Orax

due to flexure (which occurs at the beam center) as

‘max _ _7B (12)
a LAcE
max

Rectangular Section Beam. — For a full-depth honeycomb beam

with & rectangular cross-section of width e and thickness H, and
with facing sheets (skin) of thickness tg,

B = EHzetS/2 R A x eH . (13)

Then the correction factor term appearing in Eq. (8) becomes

TTZB - TTzE HtS (lu)
L2AG G 2

Since HtS/L2 generally is very small, the expression of Eqg. (14)
may be exvected to be small compared to unity, except for very
soft cores, for which m2E/G is very large. Thus, except for such
soft cores, the bending natural frequency expression of Eq. (9)
may be expected to suffice, since the factor by which wy is multi-
plied 1n Eq. (8) then is very nearly equal to unity.

By substitution of Egs. (13) into (12) and noting that
¢ = H/2 one finds that for a rectangular section beam

T t
max . n _LE i (15)

o
max
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APPENDIX B
SHEAR EFFECTS IN HONEYCOMB-CORE SANDWICH BEAMS

Since the honeycomb core, when considered as a continuum, has
a relatively low shear modulus, shear deflection may play an im-
portant role in the dynamics and stresses of honeycomb core sand-
wich beams. This appendix presents an approximate analysis of
the effects of the honeycomb beam shear stiffness.

In Ref. 26 there is summarized an analysis of the stress re-
sponse of simply supported honeycomb-core sandwich panels. The
analysis presented below proceeds in the same manner as that of
Ref. 26, but applies for beams instead of panels.

Relation Between Flexural and Shear Deflections. — The total
deflection w of a beam may be considered as composed of a compon-
ent wy due to bending and of a component wg due to shear, that is,

W= W, + W_ ., (1)¥

For a beam vibrating at its fundamental resonance freguency w,
one finds from simole beam theory that the deflections must sat-
isfy the differential equation

W= % w2w (2)

where the primes indicate differentiation with respect to the
longitudinal coordinate x, B denotes the flexural stiffness of

the beam, and u its mass per unit length.

From elementary beam bending theory one finds that the shear
force @ is given by

Q = _ng' . (3)

Since the shear strain is equal to wé, the shear force must also
obey

Q = GAwé s (4)

%¥Fopr the sake of simplicity, new equation numbering sequences
are begun in each appendix. All equation numbers mentioned in
this appendix refer to equations presented in this appendix.
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density pzén(w) of the fluctuating pressure due to turbulence on
an EBF 1s given by Egs, (5) and (10), but with the latter reduced
by a factor of 4.4 (or 10 log 4.4 = 6.5 dB).

Correlations. —~ If one approximates the pressure field as
spatially homogeneous, as was done for the momentum annihilation
case, one may write the wavenumber-frequency spectrum of the
boundary-layer-like fluctuating pressure field as

2, (k,0) = pPe ()6, (k)0 (k) (17)

where k, ky, kV have the same meanings as previously. The forms
of the componenht spectra ¢, and ¢, and the magnitudes of the
parameters that enter them may be” determined on the basis of data
given in Ref. 8 relating to the spatial correlations of the fluc-
tuating pressures. One finds that

L /7
o, (k) X — (18)
1 + (kX - kh) L

L /7
(19)

o, (k)
vy 1+ k2L2
vy

Here k, denotes the hydrodynamic (or "convective") wavenumber,
i.e., the wavenumber corresponding to pressure fluctuations
that pass an observation point at the flow convection velocity
V .

c 3

kh = w/VC. (20)

This convection velocity is related to the jet exit velocity Uo
as

Vc = 0,45 Uo (21)
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o (k,u) = —= f 6 (x,1) e HEZ-0T) grgyar (11)
| (om)? p

i(k » x -wT)
o(x /[f ¢p(5,w) e” = = dk  dk dw (12)

The pressure correlation ¢,(s,7) given by Egs. (6) and (3)
is isotropic; — i.e., it 1is a function of only the separation

©
—
kol
-
~
~—
]

s = [(x, - x2)2 + (y, - y?_)?']l’/2 rather than of the coordinates
(x,,y,) and (x,,y,) of the two observation points. This isotropy
implies that the wavenumber-frequency spectrum is a function of
only the magnitude k = [k? + ]&2]1/2 of the wavenumber, rather

than of the vector k; that is,

<I>p(g<_,w) = <I>p(k,w) (13)

Since the pressure correlation ¢ (s,T) consists of a pro-
duct of a spatial and a time function, the wavenumber-frequency
spectrum consists of the product of a frequency and a wavenumber
function;

2

o (k) = BTo, ()0 (k) (14)

o(k) = 1 e‘S/L eTIE X dxdy. (15)
(2m)?

With the above relation for the separation s,

where here

00

2 3
o(k) = 5%:/. e—S/LJO(kS)ds = %? [1 + k?L2]” % (16)
0

where JO is the zero-order Bessel function of the first kind.,.
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suggest that this correlation depends only on the separation
distance s between the two observation locations, and not on
the direction from one point to the other. Furthermore, these
data indicate that the correlation length (i.e., the distance
within which the correlation decays to a small fraction of its
maximum value) is considerably smaller than the distances over
which there occur significant variations in the mean velocity
U or in the mean-square fluctuating velocity u?, Thus, one is
justified in considering u to be a nearly spatially homogeneous
field. Taking account of the exponentially decaying character
of the correlation indicated by the data, one therefore may
write

R N ems/b emlTl/ e (3)

where L and Ty denote the correlation length and the correlation
time, respectively, of the fluctuating velocity.

The data also suggest that one may estimate the two above-
mentioned correlation parameters from

L ~ 2.5 x 107%X (L)

T ™ 0.1X/U, (5)

where UO represents the jet exit velocity.

In terms of the previously indicated approximations, one
may express the pressure correlation (Eq. 2) on the EBF as

¢plp§T) ¢p(S,T) bp®U ¢u(s,T) (6)

For distances X of interest for realistic flaps (i.e., X/D ~ 9),
the local velocity U is very nearly equal to the exit velocclty

U, or U, (see Figs. 1lhb and 15).

Mean-square pressure. — From_Eq. (6) one finds that the
mean-square fluctuating pressure p° is given by

2

p? = ¢ (0,0) = ho2U2u? x (LqI)? (7)
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APPENDIX A

MODELS AND ESTIMATES OF AEROACOUSTIC LOADS
ON EXTERNALLY BLOWN FLAPS

Jet Efflux Configuration

A typical idealized jet efflux configuration is sketched in
Fig. 2, showing a converging conical "potential core" surrounded
by a spreading conical expanslon region. It 1s expected that
externally blown flap (EBF) structures will be inserted in this
spreading region, in order to deflect the flow downward, so as
to provide 1lift, The problem to be considered here consists of
characterizing the fluctuating pressures that will act on the
flap surfaces, so that one may estimate the corresponding vibra-
tory stresses for design purposes.

At first glance it may seem inappropriate to consider the
flow produced by a fan-jet engine like that from a simple Jjet.
However, one may conclude from Fig, 14 that the simple Jjet gives
a reasonable approximation to the flow profile in those regions
which EBF surfaces are likely to be., Whereas Fig. ll4a indicates
that a pronounced low-velocity fan-flow annulus may be discerned
near the exlit plane, Fig.lub shows that the fan flow plays only
a relatively minor role at locations several diameters from the
nozzle plane. Indeed, if one plots the fan-jet data of Fig. 1hb
in non-dimensionalized form and compares it with similar data
for an ideal circular jet (Fig. 15), one finds that the fan-jet
profiles are qulte consistent with profiles¥* corresponding to
an ideal jet issuing from the core nozzle (with diameter DC)
with the core exhaust velocity Uc'

If one assumes that the aeroacoustic noise field in the
engine exhaust stream is, like the flow profile, similar to
that for an ideal circular jet, then one may use the rather
extensive data available for ideal jets to estimate the fluc-
tuating pressures acting on an EBF inserted in the exhaust
stream,

#¥3uch dimensionless mean velocity profiles are known to
vary only little with the jet Mach number M.
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CONCLUDING REMARKS; RECOMMENDATIONS

The approach suggested here for estimation of fluctuating
pressures associated with engine exhausts is based on extrapola-
tion of nondimensionalized fluctuating pressure data obtained
from simple jets and on interpretation of similar velocity dis-
tribution data from measurements in the exhausts of a very lim-
ited number of fan-jet engines. Clearly, the availability of
data on the fluctuating pressure distribution in the exhaust
of the engine to be used in any particular application may be
expected to improve the characterization of these pressures and
to increase the confidence one has in fatigue 1life estimates
based on these pressures. Comparison of predictions based on
the approach suggested in this report with corresponding full-
scale fan-jet engine fluctuating-pressure data would also serve
as a useful check on the validity of the suggested approach.

The response, stress, and fatigue 1life estimation approaches
presented in this report follow the earlier literature in assum-
ing only the fundamental mode of the structure to be of impor-
tance. Although this assumption may lead to conservative designs
and life estimates in many cases, one can easily visualize prac-
tical situations where higher modes predominate. Such cases are
particularly likely to occur with engine exhaust excitation,
where the excitation pressures are correlated over small areas,
have spectral peaks at frequencies considerably higher than the
fundamental structural resonance, and convect along the struc-
tural surface. Indeed, there also exists some experimental evi-
dence that shows that higher structural modes play important
roles in responses to flow excitation. Of course, the importance
of higher modes in determining fatigue life 1s also enhanced by
the higher fatigue damage accumulation rates associated with
their higher resonance fregquencies. Thus, it appears advisable
to use the response, stress, and fatigue estimation approaches
suggested here with some caution, Reexamination of these ap-
proaches, and thelr extension to include appropriate higher mode
responses, is recommended.

Any but the most grossly empirical fatigue life prediction
method must be based on information concerning how the number of
loading cycles that a structure can withstand varies with the
fluctuating stress. The method suggested in this report is based
on sonic fatigue data derived from tests on panel specimens of
only one material for each panel type. In particular, the data
pertaining to the fatigue of honeycomb-core sandwich structures
is extremely limited. Thus, although one may expect the sug-
gested prediction technique to yield good results for structures
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Approximations for Small Angular Displacements. — For small

angular displacements, for which cos® =z 1, sinb = 6 , the
A n n n
above relations reduce to

&S|
!

= X -C - + - +G+il+He, +L6,]
g1 = Py tEpq gylxg mC =BT ¥ kg oyl =3 1 Y8
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Foo = M¥, + %0 gylE - 8005 0y + Ky, 527811129
thyo,308 " 83,3
Foo = m¥p + Ky 00Ma-Mod2,0) * koo, )M -m 1,2
t koo, 3l
M, + F P - F ,Q = 1,6, + k(2,082 =80) * Kg(2,1) (82 = 61)
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whence

Emym,s) ~ E(s)(n,s) = 15(n) T B(s)l (n,s)

= X, - xs + Xn(n,s)cosen - Xs<n’s>cos6S
- ] + in®
Yn(n’s)snﬁer1 Ys(n,s)SIH s
(100)
") (n,s) ~ "(s)(n,s) - ") T "(s)|(n,s)
= - - §]
yn yS + Yn(n’s)cosen Ys(n,S)COS s
+ i - in®
Xn(n,s)Slnen XS(H,S)Sln S

One may note that all k's, X's, Y's, as well as Fy, Fy,
M, m, and I represent known or given quantities. On the other
hand, the x's, y's and 8's are the unknowns. Thus, one has
three unknowns per flap element, as well as three equations
of motion per element, so that one has as many equations of
motion as there are elements.

Equations for Illustrative Flap System

Dimensions. — The rather formidable appearance of the
foregoing equations is due to the somewhat intricate notation,
which was introduced for the sake of generality. 1In order to
obtain a clearer view of the nature of these equations (and
of the meaning of the notation), it may be instructive to
refer to the particular configuration sketched in Fig. 13.

If the various capital letters indicated in that figure denote
(positive) dimension values, then in terms of the previously
introduced notation,
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displaced by the amounts &,n in the x and y directions, respec-
tively, i1f the flap center of gravity is displaced by the amounts
X, and y, in the coordinate directions, and 1f the flap is
rotated through an angle 6,, where

£ = x_+ Xcosb_ - ¥Ysin®
n n n
(97)
n=vy, + Ycosen + X51n6n
Spring Forces. — The difference between the displacements of

the force-interconnection points on two flap elements, which
points coincide when the flap system is in equilibrium, may thus
be found from the difference between the £'s and n's for the two
points. This difference corresponds to the extension (or com-
pression) of the interconnection springs, and therefore determines
the spring forces.

Dynamic Equilibrium of Flap Element, — Using the attachment-
point coordinate designations* indicated in Fig. 11, one may find
the following equations of motion for the nth flap element:

Fan = ™%y * kx(n,n—l)lg(n) = Em-1)| (n,n-1)
* ¥y(n,n+1) En) = Egnr) (n,n+1) T *e
(93a)
Fyn = m¥, t ky(n,n—l)‘n(n) = "(n-1)] (n,n-1)
¥ ky(n,n+1>‘”<n> " N+ (nyne1) T

*FE.g., Y denotes the Y coordinate, as measured in the
n(n,n-1)

system attached to the nth flap element, of the point at which
the nth and (n-1)th elements are interconnected.
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Changes in the flap element's flexural rigidity and mass
per unit length may be seen to have somewhat lesser effects
on these two fatigue 1lives. On the other hand, the core
density affects the core's fatigue life very significantly,
with a 10% increase extending the fatigue 1life by a factor
of about 2.7. Again, the jet exit velocity is the most
important jet parameter, with a 10% decrease in U, leading
to increases in the skin and core fatigue lives by factors
of 2.9 and 6.4, respectively.
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If one again substitutes for ¢, from Eq. (81), one obtains

2426 7.05
2 |H A . . 1
640 Q; [ﬁ |E] g 106 855 3 —
X -5507-05 Ul . 5
o) o)
T
h
= < for £ << f
10 18 T 705 d" 10 6 1
ref “ref
. (dIO.G(A/e)%osngtszs'-)( X 352 )
121 1.265 7.05 17176 2 5
\ L¥* 1 (u/B) py Ug
for f >> fn (94)
Design Considerations. — Equations (90) and (93) show that

the fatigue 1lives of facing sheets and honeycomb cores lncrease
with decreasing exciting pressure spectral density (evaluated at
the flap element's fundamental natural frequency). This trend

is as one would expect intultively. Since the spectral density
decreases with increasing frequency, as indicated by Eq. (9), one
may obtain greater fatigue 1life by designing the flap element to
have a higher fundamental resonance. In view of Eq. (55), a nigh
fundamental resonance results from use of short unsupported spans
L and of large stiffness/mass ratios B/u.

As evident from Egs. (92) and (94), reductions in L can re-
sult in quite dramatic increases in fatigue life, provided that
the flap element's fundamental frequency f, 1s above the transi-
tion frequency fp. If £, < fp, then the facing sheet fatigue
1ife increase produced by a given amount of length reduction 1is
somewhat less dramatic — and this length reduction may indeed be
expected even to reduce the core's fatigue life,.

From Egs. (91) and (93) one may determine that

T 11 299 4e0 6 T n,r o? fehos
“h . 2.6%10 A cL d \'"¢( ref\7°°| 1" “rer (
T B, cr r? d o} cprZfli 95)

ref ref
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which indicates that stringers typically have much longer fatigue
lives than .skin panels - in agreement with experimental observa-
tions.

=

Thus, one generally should first design the panels so that
they have adequate fatigue lives, and then verify that the stringer
design selected (usually on the basis of other than fatlgue consid-
erations) has a fatigue 1life that is no less than that of the pan-

els,

Honeycomb-Core Sandwich Flaps

Facing Sheets (Skin). — If one substitutes into the fatigue
life expression of Eq. (O7) the number of cycles to failure as
given by Eg. (71) and the natural frequency expression of £g. (55)
— with a, = 2.36, to account for boundaries that are neither sim-
ply supported nor fully clamped, — and if one also uses the sec-
ond stress expression of Eg. (68), which applies for the same
boundary conditions, one finds that

B3 1/"0 4 06
T ~ 360 B. L2 42 B Orer i
f 1 B ecLE @p(f?j

pl-515 pg2-545 Or'ef o n, 203
360 B, o SClE E;T?TT- . (90)

Q

Y

In order to display the dimensional correctness of this ex-
pression clearly, one may define an effective flap density
or = /A, an effective radius of gyration r = vB/EA, and an ef-
fective longitudinal wavespeed cyp = /E7pf. With these substitu-
tions, one may rewrite Eg. (90) as

2.03

2
. 1,2 Ap |06 n 1I’Cfr,e £ .
T, ~ 360 B, (C—f‘f) (ec_L) (cf%(fl} (91)
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T O @]

— 5 = for f << f,,
0.548 il
ref S (87)

0.55 (aoaou (I*/H)°‘5“8n°'27“) ( ¥0-274 )
1.096 0.726 0.548;1.370
b (th) S5 UO

for £ >> fT

Design Considerations. — As is evident from Egs. (80) and
(86), the fatigue lives of skin panels and of stringers increase
as the excitation — represented by the pressure spectral density
¢, (f) — decreases. This behavior is as one would expect intui-
tively, of course. Since this spectral density decreases with
increasing frequency, as indicated in Eq. (7), one should design
the skin panel to have as high a fundamental resonance frequency
f as possible. In view of Egq. (79), this implies that one should
choose the largest admissible panel thickness h and the smallest
panel edge length a. One might also consider choosing materials
with large longitudinal wavespeeds cy, but most acceptable struc-
tural materials have wavespeeds that differ by no more than about
10% from each other, so that one stands to gain little by choos-
ing alternate materials on this basis.

Table I, which has been developed on the basis of the high-
frequency vart of Egq. (83), shows by what factors the fatigue life
of a blown flap panel may be expected to change as the result of
changing the various parameters. Thus, for example, one finds
that a change in the skin thickness h by a factor of 1.50 (i.e.,

a 50% increase) would increase the fatigue 1life by a factor of
71; similarly, decreasing the panel edge length a by 20% would
lengthen the fatigue life by a factor of 14, whereas doubling the
damping n would increase that life by a factor of 4.9,

As evident from both Egq. (83) and Table I, relatively small
changes in h and a can lead to guite considerable changes in pan-
el fatigue 1life; the effects of changes in the other structural
parameters are much less significant. Small changes in the dis-.
tance X of the flap from the engine exit have relatively little
effect on the fatigue life, and changes in the gas density (asso-
ciated with exhaust temperature changes) that can occur with a
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If the panel resonance frequency f is in a range where
¢, (f) varies little with changes in f, then Eq. (80) exhipits
all of the dependences of the fatigue 1life on the panel para-
meters. On the other hand, if %p(f) varies significantly with
f, then the devpendence of f on the panel parameters gives rise
Eg additional effects. From Eqs, (8), (15) and (16) one finds
at

2113
0.0115 pOUOX for f << fT

¢ (f) =

p( ) 2715 2 (81)
0.29 poUO/Xf for £ >> fT

where the transition frequency fT obeys¥

fp ® 1.5 UO/X. (82)

Substitution of Eg. (81) into (80) and use of Eg. (79)
results in

5.90 . 2.30
(3.2 x 103 h n 1 for £ << fT
) 5 2-60 CL&m X2:30 (460 176:90
o o
T g
—_— = o]
10%c2% B | Y
re ’ hm.wrﬁdoCLLm 250
1.9 for f >> f,,
\ g 1180 0 460 [J11-50 i
o

where the first parentheses enclose all relevant panel para-
meters, whereas the second enclose the jet parameter fterms.

Stringers. — Again for the purpose of exhibiting the sa-
lient parametric effects most simply, it is useful to consider
the common case where the stringer length is the same as the
greater of the two panel edge lengths, and where the spacing
between stringers is equal to the shorter panel edge length.
With bg = b and ag = a, assuming b/a > 3, and using Eq. (797,
one may approximate Eq. (48) by

¥FPor the typical values of Uo = 750 ft/sec and X = 10 ft,
one finds fq * 110 Hz.
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Estimation Procedure. — In order to estimate the fatigue 1life

of a honeycomb core sandwich flap element, the following procedure
is recommended:

32

1.

Calculate the fundamental beam resonance frequency f1
from Eq. (55). If the beam end conditions are not
well defined, take o, = 2.36.

Determine the spectral density é,(f,) of the pressure
acting on the flap at frequency %1 from corresnonding
data, or estimate it from Egs. (15) or (16).

Find the maximum root-mean-square stress in the skin from
Eq. (65), if the end conditions (and the assoclated fund-
amental mode shapes) are well defined. Otherwise, find
that stress by use of Egq. (68). Take n = 0.04, unless
better data are available.

Estimate the maximum root-mean-square shear stress in
the core as the basis of Eg. (69).

Calculate Ny from Eg. (72) or (73) and find the skin
fatigue life T, from Eq. (74) for the confidence 1limit
of interest. gor materials other than 5052-H39 aluminum,
multiply T by kp from Appendix C.

Calculate Ny from Eq. (75) or (76) and find the honey-
comb core fatigue life T,, from Egq. (77). For materials
other than 7075-T6 aluminum, multiply T¢ by K, from
Appendix C,

Take the effective fatigue 1life of the entire structure
as the lesser of the values of Ty and Tp.



Fatigue Life

Facing Sheets. — From Fig. 51 of Ref. 9, which summarizes the
results of a regression analysis of data obtained on panels with
7075=-T6 aluminum alloy facing sheets, one may deduce the following
relation between the maximum skin stress ¢, and the number of
cycles Ne that the skin can withstand without failing:

0]
log Np = ~4.06 log( ) + log B (70)
1
ref
or
= —-L4L06
No. = B, (ol/oref) . (71)
Here, as before, Orop = 103 psi; for the present case
9.22 -95%
log B, = ¢{9.53 for the -50% confidence limit, (72)
9.75 0%
corresponding to
1.6 x 10° ~95%
B, =(3.4 x 10° for the -50% confidence limit
5.6 x 10° 0%

(73)

The discussion that follows Eq. (46) applies here againj; the
fatigue 1life ch of the facing sheet corresponding to the -C%
confidence 1limit may be found from

Tec = Neo/fy (74

where, of course, f, represents the fundamental natural frequency
of the sandwich beam and Npn is found from Eq. (70) or (71).
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rms stress associated with beam vibrations in the fundamental
mode as

o, = Ec(u! ) = EcU o ,
1 rms’max rms ‘max

where the primes indicate differentiation with respect to the
lengthwise coordinate x, E denotes the modulus of elasticity of

the skin material, and ¢ represents the maximum absolute value
of ¢"(x). max

If one combines Egs. (60), (61), (62), and (64), one finds
that the maximum root-mean-square skin stress obeys

n
_ ECEJ1¢maX fl@pil5 p
9y T T3 53 , n (65)
w2 uLf1 1
The similarity of the term under the square-root sign to the
square-root terms appearing in Egs. (29) and (47) is obvious.
The term J1¢%ax depends only on the mode shape, and thus
only on the boundary conditions. Since the mode shape, normalized
in accordance with Eg. (57), is given (Refs. 23, 25) by
V2 sin(mx/L) for simply supported ends
o(x) = (66)
cosh(Bx/L) - cos(Bx/L) - y[sinh(Bx/L) - sin(Bx/L) ]
for clamped ends
where B = 4.730, v = 0.9825, one may determine that
brn/L ~ 12.6/L for simply supported ends
i =
T 00 (67)
37.4/L for clamped ends
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where L denotes the beam's length, B its bending stiffness*, and

u its mass per unit length. The parameter o, represents a con-
stant that depends on the boundary conditlions; for a beam that is
simply supported on both ends, a, = n/2 » 1.57, and for a clamped-
clamped (or free-free) beam, a, = 3.56. Since in a realistic flap
element the boundary conditions are likely to be somewhere be--
tween simply supported and fully clamped, one may reasonably take
a, =~ /(1.57)(3.56) =~ 2.36 as a first estimate, in absence of better
information.

Resonant Response of Fundamental Mode. — In order to analyze
the response of a uniform beam in its fundamental mode in general
terms, it is convenient to introduce the mode shape ¢(x) associ-
ated with that mode. One may then express any time-dependent beam
deflection u(x,t) in the first mode (Ref. 33) as

u(x,t) = Ult)e(x) . (56)

The mode shape ¢(x) is defined physically only within a multinli-
cative constant; of the various normalizations possible, the one
chosen here (to facilitate use of available tables and references)
is

L
[ $2(x)dx =L . (57)

O

It is well known that the dynamic response U(t) of any struc-
tural mode is like that of a simple spring-mass-dashpot system
with a mass equal to the modal mass

L
M, = f ue?(x)dx = uL , (58)
o

exposed to a force that is eqgual to the modal force

¥For a homogeneous beam of a material with Young's modulus E and
with a section having a moment of ilnertia I, the bending stiff-

ness is B = EI.
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The following procedure is recommended for estimation of
stringer fatigue life:

1. Calculate the panel fundamental resonance freguency f

and the pressure spectral density Qp(f) as 1in the panel fatigue
life estimation procedure.

2. Evaluate the approximate maximum rms stress op in the

stringer from Eq. (48), using n = 10-%, unless better damping
data are available.

3. TFind the corrected rms stress estimate from Eq. (49).

4. Calculate N, from Hq. (50) or (52), and find e
from Eq. (54),

For materials other than 7075-T76 aluminum, multiply

r k »
I'oa by m from Appendix C.
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between the rivet lines of adjacent stringers, H the stringer
depth (see Fig., 7), and I an effective moment of inertia of
the stringer cross-section, given by

I2
I =1 Xz (48a)

XX I
Z7Z

Here T,, denotes the centroidal moment of inertia of the stringer
cross section about an axis parallel to the panel surface (see
Fig., B), Iz, represents a similar moment of inertia about an axis
normal to the nanel surface, and Ixy denotes a similar mixed mo-
ment of inertia.* As previously, f denotes the fundamental reso-
nance frequency of a skin nanel, n reoresents its loss factor,
and &5 (f) denotes the spectral density of the fluctuating excita-
tion pressure (at the frequency f).

Correction of rms stress estimate on basis of test data. —
Since the various assumpntions involved in the derivation of Eqg.
(48) may renresent rather noor approximations of conditions oc-
curring in practical structures, one would expect predictions
made on the basis of Eq. (48) to deviate from corresponding ex-
perimental results. Comnarison of such predictions with experi-
mental data (Ref, 7) indlcates that the experimentally observed
root-mean-square stress de on the average 1s related to the cor-
resvonding o calculated from Eq. (48) as

14
Oe Ob
T psi 900(1 psi) : (49)

The above relation was derived on the basis of calculated oy
values ranging from about 150 to 3000 psi; its applicability to
values ocutside this range remains to be established.

Cycles to failure; survival probability; fatigue 1ife. —
Data presented in Fig. LI of Ref. 7 indicates that the number Ng

* i = 2 = 2 =

That is, I fA z?dA , I, fA x2da I, fA xzdA

where A represents the area of the stringer cross-section. Ap--
pendix I of Ref. 7 gives expressions for these moments of inter-

tia for zee, channel, and hat sections.
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Although the time~variation of a randomly varing parameter
like the panel stress 1s not a simple sinusoid, and one can not
speak of cycles in the strictest terms, one may expect the panel
vibrations to be approximately sinusoidal in time as long as they
are dominated by a single mode — as was previously assumed in the
response analysis. One may then consider the stress signal be-
tween successive zero crossings as a half cycle, with the signal
varying approximately like a sinusoid at the natural frequency of
the system. Knowing this frequency and the number of cycles N
that produce failure, one may calculate the fatigue life.

For failure probability distributions that are symmetric
about the mean, (50-C/2)% of the samples fail under fewer stress
cycles than the number corresponding to the -C% confidence 1limit
(Ref. 21). Thus, for example, if N = 10’7 cycles corresponds to a
confidence limit of -50% for a given panel design exposed to a
given excitation, one may expect 25% of all vanels to fail at
less than 107 cycles (i.e., one may expect 75% of all panels to
survive after 107 cycles).

Fatigue 1life. — The fatigue 1life of a structure obviously
must be defined in terms of a failure probability or similar
statistical measure. Here 1t i1s convenient to use the fatigue

life corresponding to the -C% confidence limit, which one may
find from

T, = N/T (47)

where Ny is obtained from Egs. (45) and (L6) for the confidence
limit in question and f denctes the natural frequency of the vanel
under consideration.

In order to estimate the fatigue life of a given vanel, the
following procedure is recommended:

1. Calculate the panel fundamental resconance frequency from
Eg. (35), using the correction of Eg. (37) for curved panels.

2. Determine the spectral density ¢.(f) of the pressure
acting on the panel at the resonance frecguency f from correspond-
ing data or from Eg. (15) or (16).

3. Find the maximum root-mean-square stress from Ea. (41),

modifying the result according to Eq. (42) for curved panels.
Take n = 107%, unless better data are available.
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Fig. 5.2 of Ref., 8); the estimates tend to be too high — by as
much as a factor of 5 at low stress values, and generally by less
at higher stresses, Means for improving the estimates are not
avallable at present.

Below are tabulated values fR/f and OR/O calculated from

Egs. (37) and (42), taking for b?/hR the greatest reasonable

. s 2 _ 2 ~ 2
value. This value 1s b°/hR = A (a/h)max(a/R)maX ~ 175 A®, where

(a/h)max = 500 is the greatest likely practical value for this
ratio, and where (a/R)maX = 0.35 is the greatest value of which
Egs. (37) and (42) hold. For smaller values of a/h and a/R —
that is, for smaller b?/hR — both fp/f and o./c are nearer to
unity.

b/a 0.3 1.0 3.0
fR/f 1.55 8.45 13.1
OR/U 0,76 0.33 0.83

Panel loss factors. — Because the resvnonses of panels to
random excitation are dominated by the responses of resonant
modes, the damping of a skin panel — as characterized by the loss
factor n — is important in establishing the magnitude of 1ts re-
sponse and the associated oscillatory stresses. As evident from
Eg. (29) and from the relations derived from that equation, the
root-mean-square stress varies inversely as vn.

References 18 and 19 suggest a method for estimating the
loss factors of panels with riveted edges, taking account of such
parameters as rivet svacing, width of contact area, and nanel
wavelength (as a function of frequency). However, this method
may be somewhat too cumbersome for preliminary design purposes.
Abundant experimental evidence¥* indicates that for conventional
aircraft structures (i.e., for structures not provided with
special damping treatments), n differs little from 10-2. This
value may therefore be taken as a reasonable estimate, unless
measured data for the particular structure under consideration
are avallable.

¥E.g., see Ref. 20. Reference 8 suggests n = 0.0085 for typical
aircraft structures, based on values between 0.008 and 0.009
reported for fuselage panels in Ref. 13, and on 0.0085 reported
for tailplane panels in Ref. 14. The loss factors of the test
panels investigated in Ref. 9 ranged between 0.005 and 0.009.
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On the other hand, if one uses the expression (35) corresponding
to more realistic boundary conditions, one finds

® (f)
s = 1.104 el (b 4 (a + D Q. (40)
an h b a .

In Ref, § there is derived yet another expression for o, on the
basis of a regression analysis of expverimental data for

1 < b/a < 3 and 120 < b/h < 500, arranged in nondimensional
crouns of variables deduced from ideal clamved-edge nanel analy-
sis. This exnression (when rewritten in consistent units) cor-
responds to

c o () 74
o=o.2u‘f-—_L§n—(%) n-o0e  pTles (41)

It is instructive to compare the stress estimates one ob-
tains from the three foregoing equations, Clearly, Egs. (39)
and (40) differ only in the functions of the aspect ratio b/a
they involve and (slightly) in their numerical coefficients, If
one evaluates the aforementioned functions (Fig. 8), one finds
that for practical values of the aspect ratio the two functions
differ by about ten percent in magnitude and exhibit very nearly
the same trend. Because of the differences in the magnitudes of
these functions and in the coefficients of Egs. (39) and (40),
the stress one calculates bv use of Eq. (39) is higher by a fac-
tor of about 1.2 than the stress estimate one finds from Eg, (40).

The function F!®® | which appears on the right-hand side of
Eq. (41) obviously depends more strongly on b/a than the func-

2

associated with Eq. (39); this stronger dependence is
FI-GB

tion F

evidenced by the slightly steeper slope of the curve in Fig,

3
8., The function F!'®*® also is found to exceed R/ by about 217%
for b/a = 1, and by about 67% for b/a = 10. However, Eq. (41)
differs from Eags. (39) and (40) also in the exponent on (b/h)

and in the added n~%% term. For the typical value of n = 1072,
the latter term amounts to 1.32. For values of (b/h) between
100 and 500, corresponding to the panels used in tests which
served as the basis of development of Eg. (41), the value of

(b/Mh) K lies between 3.17 and 4.72. Thus, on the average,
(o/h) % =08 =188 /(6 /n) 2p= A W (1,0)(1.3) (1)) ~ 3.7, If

one multlplles the numerical coefficient 0.24 by this value,
one obtains 0.,90; comparison of this result with the coefficient
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_m D 1 1 .
R (‘Z’* “‘) (300

a b?
and that of a clamped panel obeys (Ref, 9)

2n /D F(b/a)

e ® 3 ¥n ab > (31)
where m denotes the mass per unit area of the panel and » its
flexural rigidity, and

1
F(o/a) = [2 + 3v2/a + 3220217 (32)
For homogeneous nanels
Eh’® .
D= —21 (33)
12(1 -v?)
m=oph , (34)

where E represents Young's modulus, v Polscon's ratio, and p.
the density of the structural material. ©One may thus estimate
the fundamental natural frequency of a skin-stringer panel from

he
- = _ L :
f = \/fsfc = G(b/a) (35)
where ¢, = /E/ps revpresents the longitudinal wave velocity®in
the nanél material and
1
o a 52 % {1.25 for b/a = 1
Gb/a) = ¢ |2 (1 + 2] Flo/a) - (36)
b? lO.69 for b/a >> 1 ,

¥For most structural metals, one may take cy = 2 x 10° in/sec
with adequate accuracy. Since v? << 1 typically, Poisson's Ratio
does not avpear in these approximate expressions,
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be well justifiled in many practical cases. Once the panel motions
have been determined, the sonlc fatigue analysis method proceeds
to determine the stresses induced in the stringers as the result
of the loads imposed on them by the vibrating panels, and it then
compares these calculated stresses with experimental stress and
fatigue data.

Skin

Relation between dynamic and static stress, — In Ref. 6
analysis of the response of elastic structures to random pres-
sure fields 1is discussed in general terms, and simplified re-
sults are presented for the case where:

(1) One mode predominates in the frequency range of

interest.

(2) The excitation pressure is in phase over the

entire structure of interest,

(3) The spectrum of the excitation does not change

rapidly in the vicinity of the resonance fre-

guency of the dominant mode.
It is shown in Ref., 6 that if the foregoing conditions hold,
then the root-mean-square stress o Induced at a glven location
in a structure (or panel) by a random pressure field mav be ex-
pressed in terms of the stress o, induced at that same loca-
tion by a uniformly distributed static pressure of unit magni-
tude as

(29)

m
g = ‘é‘ﬁ- fnq)p(fn> O'o

Here n represents the structural loss factor (of the dominant
mode at its resonance), f, denotes the (cyclic) resonance fre-
quency of the dominant mode, and ¢,(fp) represents the spectral
density of the exciting pressure ag the frequency f,.

Resonance frequencies of flat rectangular panels, — A meth-
od for determining the natural frequencies of multi-bay systems,
taking into account the flexural and torsional stiffnesses of
the various stringers, is presented in Ref. 7. An alternate
method, applicable to structures with many equi-spaced identical
stringers between flexurally stiff frames, is summarized in Ref,
8. These methods, however, are relatively complex; — perhaps
too complex for preliminary design purposes. It 1s 1likely also
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corresponds to the previously chosen reference values and to the
reference frequency fref = 100 Hz., Substitution of Eq. (20)

then yields
Yo X £
153.5 +50 1log T -10 log T -20 log F
ref ref

ref

Ls,hi freq -

TO-+H60
-20 log —'5?0— (28)
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Overall fluctuating pressure level, — The overall fluctua-
ting pressure level Lo, is a logarithmic measure (expressed in
decibels) of the mean-square fluctuating pressure p2, defined
as¥

- 2 42
Loa 10 log (p /pref), dB (17)

where ppep is a reference pressure, Substitution of Eg. (13)
into the above then permits one to write

) (18)

CA ef

L = C + 20 log (po/pref> + 40 log (Lo/Ur
where pprer and Up,,p are reference values of the density and
velocity, and

C = 20 log (0.24p Uz _/p

ref ref ), dB - (19)

ref

If one chooses pPper = 0.0735 1b/ft? (corresponding to air at

at room temperature and one atmosphere), Upefr = 750 ft/sec (a
typical core engine exhaust velocity), and ppef = 2.9 x 107 %psi
(= 0.0002 microbar, the international standard reference value
for acoustic pressures), one obtains C ~ 177.5 dB.

Since the density of a gas is inverselyv proportional to
its absolute temperature, one may replace the density ratio of
Eq. (18) by a corresponding temperature ratio and write

T <+ 460

U
" °_| - o
Lo 177.5 + 40 1log (Uref) 20 log 520 ,  (20)

where TO represents the temperature of the exhaust stream in °F,

Pressure spectrum level, — The spectrum level of the
fluctuating pressure is a logarithmic measure (expressed in
decibels) of the spectral density ¢p(f), defined as

¢ _(f)

- (21)
L, = 10 log 5"—2—"T?7

p,ref

where ¢p rep(f) 1s an appropriate reference value, usually taken
>

as pzref/HZ'

¥A11l logarithms in this report are base 10,



which show how dpz/q varies in the stream-wise and cross-wise
directions along a plate inclined at various angles to an im-

ninging jet, one finds that Wp?/q does not exceed 0.1 for
X/D > 9 and for angles between the plate surface and flow-normal
greater than 30°. This value of 0.1 is considerably smaller

than the value of VET/q = 4T ~ 4(0.,12) = 0,48 one obtains from
Eg. (5) for a normally impinging jet with the near-maximum tur-
bulence intensity I = 0.12,

The frequency-spectral density ¢.(w) of the fluctuating
pressures associated with nearly tangential flows may again be
approximated by Egs. (7) and (8). The pressure cross-correla-
tion function here 1s more comnlex, however, being character-
ized (see Appendix A) by different correlation lengths (or
"eddy decay scales") Ly and Ly in the stream-wise and trans-
verse directions, with

LX » 13.5 Vc/w

(11)
Ly x 2.0 Vc/w ,
where
V,~ 0.45 U (12)
represents the convection velocity of the flow,
Design Pressures and Pressure Levels
Maximum mean-square pressure. — Although one may use the

data shown in Figs. 3-6, together with the previously given
equations, to estimate the fluctuating pressures that occur at
any specific location, one usually need not consider all this
detail for design purposes., By inspection of Figs., 3 and 4
one finds that for 8 < X/D < 20, corresponding to typical lo-
cations where EBF surfaces may be expected to be placed normal
to the flow, the turbulence intensity does not exceed 0.12.
Since one also may note that in the high-turbulence region
(i.e. for r/D<1) the turbulence intensity decreases slowly
with X/D, approximately according to Eq. (3), one may choose

I = 0.12 for general conservative design purposes,



varies along the axis of a jet, and Fig. 4 shows how this in-
tensity varies along the radial coordinate. Here U, represents
the jet exit velocity (which, for a fan-jet engine is taken to
be the core engine exit velocity) and u? denotes the mean-souare
axial fluctuating velocity.

As is evident from Fig. 3, the intensity I on the jet axis
is at approximately its maximum value of 0.11 at X/D = 10. Fig-
ure 4 shows that for X/D > 8, I does not exceed approximately
0.12. From examination of the peak values of Fig. 4 one may de-
termine, in fact, that for X/D > 9, the maximum value of I obeys

I ~ 0.165 - 0.00L4 X/D (3)
max
and occurs at a radial coordinate rpeak’ given by
Theak X
+=2= 20015 5 - 1.0 (4)

The velocity and pressure fluctuations within the potential
core typically are much smaller than those in the flow outside
the core. Thus, for the regions of interest with respect to
blown flars, T ~ 0.12 may be expected to represent an upper
bound suitable for conservative design purposes,

Pressure Fluctuations on Flap Surfaces

Normally TImpinging Jets. — For flap surfaces on which the
Jet flow impinges essentially normally, one may take the momen-
tum flux in the flow to be annihilated at the structural surface.
With this assumption, the mean-square fluctuating pressure p2 is
found to be related to the mean-square fluctuating velocity u?
(see Appendix A) as

p? = 4p2U%u? = (4qI)? , (5)

where p denotes the local fluid density and U the local mean ve-
locity. For most locations of interest for EBF's, the local ve-
locity U 1s nearly equal to the exit velocity UO and the local
gas density p differs little from the density Po at the exit.
With these assumptions one obtains the above indicated approximate
aquality, where
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Response Calculation

Beam. — For the purpose of illustrating the general technique,
it 1s again convenlent to discuss the response of a uniform beamn.
Treatment of more complex structures involves no different concepts,
only more intricate calculations,.

From the definitions of the admittance and of the pressure
spectral density, one finds that the mean-square velocity of the
beam at any given frequency w, cbeys

1 OO A 1 o
vi(w ) = o }{ @(k,wl)|{(k,wl)j2 dk (8)

Thus, if one knows bLoth ¢{(k,w) and Y(k,w), one may calculate the
mean-square veloclty at any frequency.

Because the two functions appearing 1in the Integrand typically
have pronounced peaks, these peax values usuzlly dominate the re-
sponse, permitting one readily tc obtain simple approximations for
the Integral. Filgure 22 illustrates this beliavior for a one-dimen-
sional structure subject to simultaneous Jet nolise and turbulent
flow excitation,.

The upper part of this flgure shows a sketch of the pressure
spectral density function, whicn for this simultaneous excitation
consists of the sum of the functions due to the separate excita-
tions (see Figs. 19 and 20). Thus, the density function here ex-
hibits one peak at the acoustic wavenumver x, (at the frequency
w, under consideration), and a second peak at the hydrodynamic
wavenumber ki, Also shown 1s the square of the admittance func-
tion (see Fig. 21) and the product of these two functions, which
is the integrand of Eg. (8). The relative magnitudes and loca-
tions of these peaks, of course, depend on the relative strengths
of the two excitation sources, con the structural damping, on the
structural mass and stiffness, on the flow speed relative to the
speed of sound, and also on the fregquency.

A k,w plot 1like that shown in the lower portion of Fig., 22
permits one to obtaln considerable insight into the variatlon of
the positions of these peaks. As previously discussed in connec-
tion with Figs. 19 and 20, the pressure spectral peaks occur at
the acoustlic and hydrodynamic wavenumbers, which correspond to
intersections of the acoustic and flow velocity lines, respective-
ly, with the fixed frequency line w = w,. Similarly, the admit-

tance peak occurs at the wavenumber k, ., = Kb(wl); this wavenumber
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Surface Pressures due to Jet Noise. — The typical behavior
of the spectral density associated with surface pressures pro-
duced by jet nolse is indicated in Fig. 20. One may note that
the contour plot here is much 1like that of Fig. 19, except that
the contour lines here cluster about the w = keg line, indicat-
ing that most of the energy associated with jet-noise-induced
surface pressures travels at the speed of sound.

If all of the sound from the jet would impinge on the sur-
face at grazing incldence, all of the contour lines would col-
lapse upon the ¢y line. 1In practice, however, a flap surface
1s subject to sound arriving with a distribution of angles of
incidence, as well as to acoustic nearfield components, so that
there occurs a distribution of energy about the sound speed
line, Nevertheless, the peak in the spectral density at a giv-
en frequency w, occurs at the acoustic wavenumber k, = wl/co.

The peak of the ¢(k,w) hill is a noteworthly feature. It
represents a concentration of fluctuating-pressure energy that
generally 1is important for structural fatigue and nolse consid-
erations, and 1t occurs at the jet wavenumber kj ~ 2n/Dj, where

Dj represents the jet diameter.

Spectral Characterization of Structural Response

Admittance of Beam, — It is Instructive to illustrate ap-
plication of the spectral response characterization for a one-
dimensional system, such as a beam or one-dimensional plate de-
forming in flexure; generalization to two-dimensional systems
then can be accomplished relatively simply. The well-known
equation of flexural motion of a uniform beam is

4 2
Bay+m3§=p(x,t), (4)

where y represents the beam's lateral displacement, B denotes
its flexural rigidity, and m 1tfs mass per unit area. On the
right-hand side there appears the exciting load per unit length
p(x,t),which is a function of the axial coordinate x and time t.
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the most extreme case,the structural response calculation then
involves the same mathematical process as for more conventional
space-time descriptions — namely, convolution of a spatial struc-
tural kernel with a load cross-correlation function. At worst,

the STSD approach leads to no more complexity than other approaches,

Spectral Description of Random Pressures

Spectral Densities. — From classlical Fourier analysis it
follows that a pressure wave that is harmonic over all space
and time can be represented (in terms of the usual complex vari-
able notation) by an amplitude and an exponential phase factor.
It is also well known that a general pressure function can be
represented as an infinite sum of such harmonic waves; this rep-
resentation 1is called the Fourier transform,

A pressure wave that 1is periodic in space and time, that
travels with velocity U in the positive x-directiorn, and that
passes any fixed point at the (radian) frequency w, thus may be
described by

I(kx-wt
b (ic,g)et (Kx-ut)
where p(k,w) denotes the amplitude of the wave and

k = w/U (1)

is known as the wavenumber. Generalized harmonic analysis per-
mits any arbitrary randcm pressure p(x,t) to be represented by

o(x,t) = 1/ ﬁ(k,w)ei(kx—wt)dkdw, (2)
(em)?) o J. o

where D(k,w), the density of the amplitude distribution in k and
w space, is the Fourler transform of p(x,t).

From the square of the magnitude of this density one may
determine the so-called pressure spectral density
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APPENDIX D
AN INTRODUCTION TO THE SPACE-TIME SPECTRAL DENSITY APPROACH
TO EXCITATION AND RESPONSE CHARACTERIZATION

Introduction

As has been pointed out in the main body of this report,
the responses of flap structures to fluctuating pressures de-
pend not only on the temporal (frequency) characteristics of
these pressures, but also on their spatial characteristics.

The presently avallable sonic fatigue analysils and design ap-
proaches, including those summarized in the main body of this
report, avold the complexities associated with accounting for
the spatial characteristics by making the assumption that the
exclting pressures are uniformly distributed over the structure
under consideration and that the structure's most significant
response occurs in 1ts fundamental mode. Although this assump-
tion often leads to conservative deslgns, one may readily show
that 1t need not 1in all cases — and, indeed, tnere exists some
flight data (e.g., Refs, 15 and 16) that indicate that the
structural responses are not described adequately by the sonic
fatigue analysis approaches in current use,

This appendix serves as a brief introduction to an approach
which should be able to provide a logical framework for the guld-
ance of data acgquisition programs for load and response charac-
terization, and which also may be expected to lead to more real-
istic predictions. This approach, which makes use of space-time
spectral density (STSD) concepts, has been developed quite ex-
tensively for dealing with the vibrations of ship structures
induced by sound and flow (and with the underwater sound radi-
ated by these vibrations), and has been applied to such prcblems
with considerable success. As discussed below, it has the addi-
tional advantages of being relatively simple in concept, cf lead-
ing to little computational difficulty, of permitting great ex-
perimental simplification and savings, and of leading to increased
accuracy.

Conceptual and Computational Simplicity. - For spatially
homogeneous excltation, the STSD approach permits one to calcu-
late the structural response as an integral over the product of
two functions, of which one characterizes the fluctuating pres-
sure, the other,the dynamic stiffness of the structure. The
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given by Eg. (6). The exponent B, of course, depends on the
component — i.e., on which of the aforementioned equations
apply. The table at the end of thls appendix gives the correc-
tion factors corresponding to these equations and to a wide
variety of aluminum alloys.

Estimation of Fatigue Stress Ratio. — Unfortunately, S-N
curves are available for only a few alloys. For alloys for
which no fatigue data are available, one may use the rough
approximation that

)]
o

2 2

1 T, (7)
where Y represents the yield stress of the material (Ref. 35,).
As evident from the table at the end of this appendix, this
approximation is very close for some materials, but may be

about 20% too high or too low for others. Nevertheless, in
absence of better information, one can do no better than to

use the above relation. The correction factors given in the
table below are based on fatigue stress ratios where these

are availlable, and on yleld stress ratios otherwilse.

Materials Other Than Aluminum. — It should be noted that
the procedure suggested here for aluminum alloys cannot readily
be extended to other materials, unless their S-N curves have
the same slopes (on a log-log plot) as those for aluminum.
Unfortunately, most other materials have different slopes and
many — notably steels — have segments of greatly differing
slopes. For such materials, further analysis and/or experi-
mental investigation 1s required.
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APPENDIX C
FATIGUE LIFE CORRECTIONS FOR ALUMINUM ALLOYS

The various fatigue 1life estimates presented in the main
text were obtalned on the basis of experimental data on struc-
tures made of only one kind of material — namely, 7075-T6
aluminum for skin/stringer structures and for the facing sheets
of honeycomb sandwich structures, and 5052-H39 aluminum for
honeycomb cores. This appendix suggests how one may correct
the estimates pertaining to the aforementioned materials so
as to obtain corresponding estimates for other aluminum alloys.

Similarity of S-N Curves. — The fatigue behavior of mate-
rials generally 1s described by so-called "S-N" curves, which
are plots of the fully reversed stress amplitude S versus the
number of stress cycles N at which a specimen fails when sub-
jected to cyclic stress of that amplitude. When plotted on
log-log scales, the S-N curves for most aluminum alloys appear
very nearly like parallel straight lines, at least in the low
stress and large N region [E.g., see Ref. 33 and Table 3.3.1(c)
of Ref. 34]. Although the classical S-N curves are obtained
from experiments where the stress amplitude i1s held constant
(for each data point), whereas the S-N curves represented by
Eqs. (45), (52), (71) and (75) correspond to random stress
variations with a given mean-square value, one may expect the
latter log-log curves for various alloys to be parallel, if
the former are parallel.

If one assumes that the root-mean-square stress g that
different alloys can withstand for a given number of cycles
is proportional to the "fatigue stress" S of the material, then
for two different materials (indicated by subscripts 1 and 2),

Q
#7]
N

2
o'1

= (1)#
) .

9]

For materials that exhibit a definite endurance limit (i.e., a
stress amplitude that the material can withstand essentially
for an unlimited number of cycles), one would be inclined to

¥For the sake of simplicity, new equation numbering sequences
are begun in each appendix. All equation numbers mentioned in
this appendix refer to equations presented in this appendix.
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where G denotes the effective shear modulus of the core (consid-
ered as a continuum) and A represents the beam's cross-sectional
area. By equating Egs. (3) and (4) and integrating the result
one may determine that

= T_B_ 1" .
"s T &G b (5)
Fundamental Natural Frequency. — Substitution of Eg. (5)
into Eqg. (2) yields
1 H 2 _?_ "
W' = g (wb - T8 wb) . (6)
For a deflection given by
. L, TX
Wy = w, sin & , (7)

which corresponds to the fundamental mode of a simoly supported
beam, Eg. (6) yields

) 1
2B - /é
w = Wy, (l + =0 ) (8)
L2?AG
where l
_n* |B (9)
wb - L2 ‘/U

may be recognized as the classical expression for the natural fre--
quency, corresponding to the case where shear effects are neglected
(i.e., where AG, the shear stiffness per unit length, is assumed
infinite).

Flexural and Shear Stresses. — The flexural stress in the
outer-most skin fiber, taken to be a distance ¢ from the neutral
axis, may be found from elementary beam theory to be given by

0 = -Ecw! = Ec(n/L)?% w

’ sin(mx/L) , (10)
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The parameters Ly and L, represent the eddy decay scales 1n the
flow and transverse directions, respectively, and obey

L, ~ 13.5 v /|w] (22)

L, =2 VC/|w| (23)

P,

The pressure field described by Egs. (17) to (23) is the
same as that assoclated with a turbulent boundary layer, except
for the numerical constants that appear in Eas. (21) to (23).
Detailed interpretations of such fields are given in Ref, 29;
some salient features are summarized below,

Because the hydrodynamic wavenumber k, appears in the de-
nominator of Eq. (18), the wavenumber spec?rum ¢, (ky) is asym-
metric in ky,, This asymmetry represents a mean convectlion of
the fluctuating pressure field in the positive x-direction with
a velocity V.. The fact that Ly and Ly have finite values ac-
counts for the decay of the correlations witn increasing separa-
tion., Inverse variation of Ly and Ly with frequency (in keeping
with the "similarity hypothesis" of “Ref, 32) accounts for the
decrease in the correlation lengths with increasing frequency.

Figure 18 indicates qualitatively how ¢,(k,w) varies with k,
and ky at a fixed value of w. The peak value of ¢,(k,w) occurs
at kx = ky, ky = 0. Because Ly > Ly, the shape of the Qp(g,w)
function is much more elongated in %he ky than in the kyx direc-
tion, Since the peak occurs at the nonzero wavenumber ky, there
is a region centered around the wavenumber vector k = (kn,0) over
which ¢,(k,w) has relatively high values, This region, which 1is
important in relation to vibration response, is known as the "con-
vective region" of the wavenumber plane; its location and extent
clearly are frequency-dependent,
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Comparison of estimated and measured spectral density. — The

frequency spectral density p2®n(w) of the fluctuating rressure
measured (by means of a small flush-mounted microphone) on a half-
scale EBF model, at a point near the axis of a cold Jjet (at X/D =9,
with Uy, ® 750 fps, pressure ratio 1.4) is shown in Fig.1l6, together
with an estimate based on Egs. (5), (7), (10) and on Fig. 3. Con-
sidering the courseness of the various approximations that underlie
this estimate, the agreement between it and the data is quite
reasonable,

Estimation on Basis of Boundary Layer Flow

Turbulent boundary layer pressures. — The foregoing estima-
tion approach was based on the assumption of momentum annihila-
tion, and thus in essence assumed flow impingement essentially
normal to the flap surface. However, since at least at some lo-
cations on the flap the flow 1s essentially parallel to the sur-
face (see Fig., 1lT), it is useful to consider a model of the fluc-
tuating pressure on an EBF that resembles that for a turbulent
boundary layer,

Extensive data on pressure fluctuations produced at the
surface of a flat plate by a jet impinging at various angles
are reported in Ref. 5., Figures 5 and 6 reproduce some of this
non-dimensionalized data, showing how the root-mean-square pres-

sure Vp? varies along the plate surface. One_may observe that
for fixed X/D and 6 the mean-square pressure p? varies slowly
with the distance x along the plate, indicating that the fluctu-
ating pressure field is spatially inhomogeneous to a slight ex-
tent, As evident from Fig. 6, this inhomogeneity decreases at
increasing distances X from the jet exit plane,

From Figs, 5 and 6 one may find that Vp2/q =~ 0.1 provides
an upper bound for boundary layer pressures on typical EBF con-
figurations (8 = 30°, X/D = 9), From Eq, (8), on the other
hand, one finds that for normally impinging flow (with I = 0.11),

\BZ/a * 0.4b,

Examination of data of Ref. 5 pertaining to the frequency
spectra of fluctuating pressures on the surface of the test plate
(see Fig, 5 for test geometry) indicates that the normalized fre-
quency spectrum ¢n(w) of the fluctuating pressures for the turbu-
lent boundary layer case has the same shape as that for the nor-
mal impingement case. Thus, one may estimate that the spectral
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where
1
Q=5 OUé (8a)

denotes the dynamic pressure at the Jet exit and

I = Yu?/U (8b)

represents the axial component of the turbulence intensity on
the axls at the axlial distance X of interest. Figure 3 shows
how I varies with X; note that for the typical location X/D = 9
for an EBF, one finds I =~ 0,11,

Normalized correlations and frequency spectrum, — From
Egs. (1) and (6) one finds that the normalized time-correlations
of pressure and velocity obey

¢p(O,T) i} ¢ugu,1) R

= e
5,700,007 ~ 70,07

(9)

The normalized frequency spectrum ¢p(w) is the Fourler transform
of the normalized correlation, so that the normalized frequency
spectrum of pressure (or velocity) obeys¥

. T./7
¢ (w) = ;L~/re_lT1/Tf et¥Tgr = —r (10)

n 2m ]_+w2T§

Wavenumber-frequency spectrum. — The general space-time
correlation ¢p(x t) is closely related to the corresponding
wavenumber-frequency spectrum ¢p(k w), where X = (x,y) is a
two-dimensional position vector (representlng the Cartesian co-
ordinates x and y of the observation point in the plane of the
flap and k = (kx,ky) is the corresponding wavenumber vector,
For spatially homogeneous and temporally stationary fields
(Ref. 29),

#Unless otherwise indicated, all integrations are to be
taken from negative to positive infinity.
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Estimation on Basis of Momentum Flux

Pressure-momentum relation, — At any given location in the
jet, The axlal momentum flux may be written as p(U + u)? in terms
of the fluld density p, the mean axlal velocity U and the fluctu-
ating axial velocity u at the location of interest. If this mo-
mentum flux 1s entirely annihilated as the jet impinges on the
EBF surface, then the fluctuating component p of the pressure
acting on the surface 1s of the order of the fluctuating compo-
nent of the momentum flux. Thus, for the usual case where the
fluctuating velocity component 1s much smaller than the steady
compcnent (u << U), one obtains

p = 2pul , (1)*

Cross-correlations. — The cross-correlation ¢p D (1) of the
1¥2

pressures p, and p, at two different locations on the flap, de-
fined as

¢p1p2(T) = < pl(t)pz(t + 1) >

thus 1s related to the corresponding velocity cross-correlation

-
—~

—
~—

It

< ul(t)uz(t + 1) >

as

©

~~
—

S
1}

ho®U, U0, (1) . (2)
172

In the above expressions, the brackets <,..> denote averaging
with respect to time t; T represents a time interval, and Ul
and U, denote the mean velocities at the two locations of
interest.

In order to obtain some simple estimates readily, it 1is
convenient to consider locations near the Jet agis (i,e., near
point A of Fig. 2) in a plane normal to that axis. Data for the

veloclty correlation ¢, u(O) for this special case (Refs. 27,28)
172

¥For the sake of simplicity, new equation numbering segquences
are begun in each appendix. All eguation numbers mentioned in
this appendix refer to equations presented in thils appendix,
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that are closely related to those whose fatigue data were used
in development of the technique, its reliability is much reduced
for other structures, Accumulation of a more extensive data
base is recommended, particularly for the types of configura-
tions and materials likely to be used for future externally
blown flaps.

Because of the great potential utility of the space-time
spectral density approach, it is recommended that application of
this approach to EBF and related problems be pursued vigorously,
both in relation to characterization of the fluctuating pres-
sures produced by the impingement of engine exhaust on flap sur-
faces and in relation to the estimation of structural response

spectra.
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FX3 = m33&3 + kx<2’3)[x2-x3+R+U+Se2 +T63]
Fy3 = m3y"3 + ky(2’3)[y3—y2 +S+T-R62—U63]

IVI3 - FyBW - FXBV = 1363 + ke(3,2)(93-82)

-kx(3,2)[x3 - X, - R -U—Se2 —Tes][T —U63]

_ky(3,2)[y3—y2 + 3 +T-k82 -U63][U + T83]

51



Fyg = mg¥y + kg 5)L85 = &85035 5y
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*100,1) = °° %200,2) = 7K *3(2,3) = 7V
100,10 7 ® Y200,0) ° 7 Y3(2,3) = 7
X1(1,2) = C Xo(1,2) = N *a3 = W
Y1(1,2) = P Yo(1,2) = L a3 =V
Xa1 =D X3(2,3) = R
Y, = E Yo.3) = S
X, =P
Ya2 =9
Equations of Motion. — The equations of motion for this

configuration then may be written as

£
{

x1 = M¥tE o 0)Er T E0d (1,00 T Rx(a,2) B TR (a,2)

Fop = m¥y *Eo 0y = nod(a,0) F Byca,2) N T2, 2

M, + F ,D - F_,E I.8. + k

- +
1ty 1 191 F Kg(1,0)[01 -8 + &k

o(1,2)L81 ~ 8]

[Bcos®b -Csinel]

- k0% L0 1

- kx(1’2)[61-52](1,2>[—Hcosel-+Gsinel]

+

- - - in®
ky(l,O)[nl nO](l,O)[ Ccos6, - Bsin l]

+

- + Hsi
ky(1,2)[nl nz](l’z)[Gcosel H51n61]
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Mn Fynxan Fanan Inen kG(n,n—l)(en en—l)

t K (n,n+1) B - 84e) * oo

cosB_ + X sinb ’ '
n n

_kx(n,n—l)‘g(n)"g(n—l) (n,n-1) Yn(n,n—l) nin,n-1)

-k cos@n‘+X )Sinen‘+ N

x(n,n+1)‘€(n) —g(n+l) (n,n+1) Yn(n,n+l) n(n,n+l
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cosfh - sing ]+ cee
n n

+ky(n,n+l)|n(n)_n(n+l) (n,n+1) Xn(n,n+l) Yn(n,n+l)

(98v)

Here m, represents the mass of the nth flap element, and I,
denotes the moment of 1nertia of that element about its center
of gravity. Fy, and Fyp denote the unsteady components of the
aerodynamic force acting on the nth element 1n the x and y co-
ordinate directions, respectively, and M represents the aero-
dynamic moment. Furthermore kx(n,s) represents the stiffness
of the spring, in the x direction, connecting the nth and sth
elements; k (n,s) represents the stiffness of the corresponding
spring acting in’'the y direction; Kg(n,s) denotes the (rota-
tional) stiffness of the rotational spfing connecting these
two elements. Also, 1if one lets E(n)(n,s% and ”(n%(n s) re-
present the x and y displacement componénfs of that attachment
point between the nth and sth elements which is located in the
nth element, one finds from Egs.(Y7) that one may write

x + X

g(n)(n,s) " % n(n,s)cosen -

sin®
n(n,s) n

(99)

=y + Y

+
n n(n,s)cosen Xn(n

T(n)(n,s) S)Sinen

b
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GENERAL TWO-DIMENSIONAL EQUATIONS OF MOTION
OF MULTI-ELEMENT FLAP SYSTEM

Idealization

Masses and Springs. — In order to idealize a multi-element
flap system as a two-dimensional (planar) dynamic system, it is
convenient to consider each flap element (consisting of airfoil,
guide-rails, and supporting structures) as a rigid body, and to
take each such rigid body as connected to each other body at a
single point by one set of springs — each set consisting of a
single spring acting in the x-direction, cone acting in the y-
direction, and one acting rotationally. Thus, the flap systemn,
as modeled in two dimensions, reduces to an array of planar
rigid ktodies interconnected by springs, as shown in Fig. 10.

A schematic representation of the interconnecting springs is
shown in the lower part of thai figure.

One may obtain the spring constai.te (arelytically or experi-
mentally) and the effective attachiient poinc locations by dis-
connecting all attachments except tie ovne of interect, nholding
all bodles fixed except the one of interest, applying a force or
moment, and observing the resulting displacements.

Coordinates Attached to Flap Elements; Notation. - It is
convenlent to select a Carteslian coordinate system attached to
each flap element, with the origin of this system located at
the element's center of gravity, and with the system's X-axis
aligned parallel to the x-axis of an inertial reference system
(attached to the wing) when the flap is in its static ecuilibrium
configuration. This coordinate system serves to locate the
various force-application points (i.e., the aerodvnamic force
locations and the interaction spring attachment points) on the
element with respect to the element's center of gravity. Figure
11 shows the coordinate system on a typical flap element and
indicates the notation used in the present analysis.

Equations of Motion

Displacement of General Point on Flap Element. — One may
readily find (see Fig. 12) that a typiecal point P, whose coor-
dinates are (X,Y) in the system attached to the nth flap, is




and from Egs. (55) and (81) one may determine that for f >> fT’

2 3
mT Olop - 4.8 (Oref) r\(x SQ\
cpd (F) T "1\Tq L)\L/\u ) . (96)

0]

For typical orders of magnitude for the various parameters, one
finds that

e (=) ()6 = () 3) @ (3): e

so that, taking the middle value of B from Eq. (73),

11
“h . 2.6x10 (15>2,99 (50)1..05 (1)10-6 (__1_) 7405 [(14'8)10—2(46)]1.495

f 3.4x10 9 103

=!
=)
2

14

b,6x10n~°

Thus, one generally would expect core shear fatigue failures to
occur long before facing sheet failures.¥ In designing a flap
element it thus appears logical first to select a core that

has the reguired fatigue life, and then to verify that the
facing sheet will endure at least for the same time span.

Tables III and IV, which have been derived from the parts
of Egs. (92) and (94) that pertain to flap elements with high
natural frequencies, indicate the factors by which the facing-
sheet and honeycomb-core fatigue lives change as the result of
changes in the various structural and jet parameters. Clearly,
the one most significant structural parameter is the unsupported
span length L; a mere 10% decrease in L may be expected to
increase the fatigue 1life of the skin by a factor of about
4,5, and that of the core by about 3.6.

¥No comparable experimental data appear to be available.
Such data as are available (Ref. 9) pertain to panels, rather
than beams, and are affected by stress raisers (e.g., fasteners)
that reduce the skin fatigue 1life.
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Equations (90) and (91) exhibit all structural parametric
dependences for the low-frequency case, where ®p(fl) is essen-

tially independent of frequency. But, since &,(f;) does vary
significantly at the higher frequencies, the a%orementioned equa-
tions need to be modified. If one substitutes for ¢p(f) from

Eq. (81) and again uses Eq. (55) with o, = 2.36, one obtains

1.515 2. 545 2.03
31 <U = d ) e for f << fy
L6-12 (GCE) 4.06 X2-03 0 4.06 U(G)-Dg

Tf o
L0°ose s, (52)
10°¢ B |

ref-. B 4-575 2.03 203
l.MS( 0 515 1 14.2%4 N Te o 10ae for f >> f‘T
H L (eCE) po do

As previously, the first set of parentiheses in eacn expression
encloses the structural parameters, the second the jet parameters.

Core, — By substitution of tie cycles-to-failure relation
of Eq. (76) and the natural frequency expression of r .. (55)
again using o, = 2.36, into the fatigue life eguatlon, Eg. (
and by using also the stress expressions of Hgs. (68) and (6
one may find that the honeycomb core fatigue life T, obeys

2.26 106 7.05
) (d d ) ATref A
ref e @p(fl)

. LZ q \o-e i?.os Pan;ef 3:525
cfr d e cf® ZfIS

ref j&

),
9)

b

Th/9.3 x 101 & L"(

W=

(33)

The second form of this expressicon involves the parameters intro-
duced after Eg. (90) and 1s presented here in order to demonstrate
the dimensional consistency of this result.
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given engine also are likely to have only minor significance.

On the other hand, the exit velocity U, is of great importance;

a mere 10% increase in thils velocity can reduce the panel fatigue
life to about one-third of 1ts original wvalue,

Table II 1s analogous to Table I, but pertains to stringers.
From Table II, which is based on the part of kg. (87) that ap-
plies for f >> fm, one may observe, for example, that doubling
of the panel edge length a (which is also egqual to the spacing
between the stringers) increases the stringer fatigue 1life oy
a factor of 1.91, whereas doubling the stringer length b reduces
the fatigue 1life to 0.47 of its former value.

By comparing Egs. (83) and (87) or Tables I and Il one finus
thiat the panel fatigue life is much more sensitive to param-ter

changes than 1s fthe stringer fatigue 1life,. It 1s also evid nt
that increases in o and c¢;, as w<1ll as decreases in «,serve to
increase the panel fatigue life, whilo they result in peductlions

in the stringer fatigue 1life.

From Eqs. (80) and (86) one .ay determine that the ratio of
vanel to stringer fatigue 1life cucys

v 2 \2. 0268
T . 230 3\(h 4.60 frn 2y 0,548 ‘mgref (88)
T “P2UAB e c. ¢ (f '
s s I L'p

If one introduces %,(f) as given by Eg. (81) for £ >> fu, if one
substitutes for f from Eq. (79), and if one takes I = H3n/2
(which corresponds to an I-beam of height and flange width i,
with flange thickness h), one finds that one may approximate the
above expression by

T B\ [n\0872f,\1-096 | (O 0 YX CL) 2.02 6 )
T (’B‘)H (') (q )“) 7o) (69)
S 3 o o

for the purpose of maiiing order-of-magnitude estimates. Substi-
tution of the middle values of B and Bg given in Egs. (44) and
(53) and of typical orders of magnitude of the various ratilos

then leads to
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> he, d (f
5. % 0,014 1B L p : (84)
b T n

The "theoretical” maximum stress given by Eq. (48), how-
ever, must be corrected according to Eq. (439), if one desires
a better representation of the actual (experimentally observed)
maximum stress o.. Substitution of Eag. (84) into (49) indicates
that that stress obeys

1
he, ¢ (f /A

o] 1 2
J{b o -
2.2 1.5 el , (85)
ref Io
ref
where o = 10°%psi, as before,.

ref

By combining Egs. (85), (79), (52) and (54) one obtains
the stringer fatigue life Tg as

: 2 0.2 74
o - oo u8 3 (éﬁ_)( 1 pesue “ncref)
S S th b 2h cLépifS

2 Io 0.5u8 0.2 74
= 0.48 B a ( Hl"ef) (@ s
S (hCL)1-27“b1.096 D 1)

where the first form again groups the parameters to display the
dimensionless correctness and the second shows the parametric
dependences more clearly.

If one again uses Eg. (8l) to account for the dependence
of ¢O(f) on the vanel resonance freguency f, which freguency
again may be approximated by Eg. (79), one may find that



DEPENDENCE OF FATIGUE LIFE ON JET AND STRUCTURAL PARAMETERS

Skin-Stringer Flaps

Skin Panels, — In order to display typical parametric de-
pendences conveniently, 1t is useful to focus on commonly used
skin-stringer configurations that have aspect ratios b/a > 2.9.
For such configurations, the function ¥F(b/a) of kg. (32) may
be approximated by ¥3(b/a) and the function G(b/a) of Eg. (30)
may be taken as equal to 0.69,.

If one takes the maximum panel stress to be gilven by kg.
(39), with the coefficient 1.18 replaced by 0.90 in accordance
witihh the discussion presented after Eg. (#41), then one finds
by use of the above indicated approximations that

\;Lazifu[f) 14
> ® 0,39y - (78)
hin
and that the fundamental natura. fre.uency cf the sk.n panel
obeys .
£~ 0.69 he /a’ . (79)

Substitution of Eg. (78) into (45), and substitution of the
result and of Eq. (79) into Eq. (47) yields the following ex-
pression for the panel fatigue life:

2 2.30
110 BR (E)“O (hngl"ef>

cp \a CL@p f

—3
Q

(80)

2

2,30
h5.<_ao (ngref)
5260 CL&m Qp(f)

0
-]
[
O
o9]

The first form of this equation groups tne parameters in a man-
aer that displays its dimensional correctness, whereas the sec-
ond form indicates the parametric dependences more directly.
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Core. — Only very few core shear fatigue failure data points
appear to be available; the data do not suffice for regression
analysis, and thus one can not establish confidence limits.

Perhaps the best one can do at present is to accept the de-
sign data indicated in Fig. 86 of Ref. 9, although the basis for
that figure is not indicated. From the curves in that figure one
may deduce the following relation between the number of cycles N
that will induce failure in 5052-H39 aluminum alloy honeycomb
core, the maximum rms core shear stress 1, and the core density 4a:

log N, = 12.76 - 7.05 log(?“l—) + 10.5810g(d d ) (75)
ref ref
or
— 7+05 . 10-6
Ny s 5.7 x 1012 (T i ) (a—i~) . (76)
vef ref/
Here 1 = 1 psi 1s a reference value of shear stress and d =
ref ref

1 1b/ft?® is a reference value of density.

Since not enough data are available for the determination of
confidence limits, it appears reasonable to assume that the fore-
going expressions pertain to the 0% confidence limit. In order to
estimate the numbers of cycles to fallure corresponding to the
-50% and -95% confidence limits (probably conservativelv), one may
mutliply the value of Np obtained from Egs. (75) or (76) by 0.4
and 0.1, respectively.¥

The honeycomb fatigue 1life ThC corresponding to the confi-

dence limit C, of course, may be calculated from

Toe = Npe/fr e (77)

¥These factors correspond approximately to the ratios of the con-
stants in Egq. (53). The factors corresponding to Egs. (46) and

(73) are larger than those given here, hence would lead to less

conservative estimates.
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If one uses the geometric average (21.7/L) of the above values,
in view of the uncertainty of the actual boundary conditions, one
may rewrite Eq. (65) as

G % 0.6 eck ¢p:f1j ecEL ¢p s
1 ~ . 9 3/ n X 0.19 T/{ - n s (68)
pL2f 72 1 (uB?) 1

1

where the latter expression was obtained by substitution of Eog.
(55) with a, = 2.36,

Maximum Root~-Mean-Square Shear Stress in Core. — In Appendix
B it is shown by means of an analysis that parallels that pre-
sented in Ref. 26 that, for a simply supported sandwich beam, the
ratio of the maximum shear stress T In the core to the maximum
tensile stress in the skin obeys

(69)

= < T -

T
o, L

]
¢)
m

where A represents the cross-sectional area of the beam. The
approximate equality applies for a beam with a rectangular cross-
section, with skin of thickness t_; this approximate expression
may suffice for the evaluation of a rough estimate in cases where
not enough information 1s available to apply the more complete
expression.

For beams with other than simply supported boundaries, the
simple analytical approach of Appendix B does not work and results
like the above cannot be obtained readily. It i1s therefore su«-
gested that Eg. (69) be used for estimation purpcses, regardless
of what the boundary conditions are.

Loss Factors. - The availilable data pertaining to loss factors
of honeycomb core sandwich structures are extremely limited,
Reference 9 reports test results for about 30 different panels
vibrating in their fundamental modes. Thelr loss factors were
found to lie between about 0.03 and 0.05, and to be comparable to
a value of about 0.04 measured on panels obtained from aircraft
development programs.

In absence of more directly applicable data, an estimate of

n, = 0.04 appears to be reasonable.
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L
F0) = [ pOge)etoax = ey (6) [ etoax (59)
A

@)

and with a modal stiffness

k, = (2rf )% M, . (60)

In the above expressions, p(x,t) represents an arbitrary pressure
distribution over the beam, po(t) denotes a pressure that is
spatially uniform, and e represents the beam width (see Fig. 9).
Note that here M, is equal to the total mass of the beam.

For a simple spring-mass-dashpot system subject to random
excitation, one finds that the root-mean-sguare disrlacement Ur

obeys (see Refs. 23, 2U4) e
Trf1<I>F( f'l'T
Urms = e = s (61)
=Y o

where &_ represents the spectral density of the force ¥ (t) and n,
denotes the loss factor of the system, 1.e., of the beam in 1its
first mode. Since the spectral density &¢p of the force is oro-
portional to the mean-square force, ¢, 1s related to the spectral
density @p of the pressure p (t), in view of Eq. (59), as

= a272
Q)F = e JICDL 3 (62)
where
L
7, = [ etoax (63)
o
Maximum Root-Mean-Square Stress in Skin. — For a given amount

of beam flexure, the greatest skin tensile and compressive stresses
occur in those fibers that are farthest from the beam's neutral
surface. If ¢ denotes the distance from the neutral surface to
the farthest fiber (see Fig. 9), then one may write the maximum
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FATIGUE LIFE OF HONEYCOMB-CORE SANDWICH FLAPS

Overview of Estimation Approach

The fatigue of flat, rectangular panels of honevcomb sand-
wich construction is discussed in Ref. 9 on the basis of classi-
cal thin-plate theory. Earlier data cited in that report indi-
cate that this theory yields good approximations to observed
vibration and stress responses assocliated with the fundamental
panel mode, and that shearing of the core plays no important role,
unless this core is very flimsy.

A flap element, however, may be expected to behave more like
an end-supported beam than like an edge-supported panel. The
analytical results available for panels thus do not apply to flap
elements directly, although one wmay hope that honeycomb panel
fatigue data will also be useful for honeycomb beam fatigue life
estimation. The following paragraphs, therefore, ftirst summarize a
corresponding beam analysls and then avply related avallable fa-
tigue data to develop a fatigue life estimation approach.

Beam Response

Resonance Frequency. — In order to simplify the analysis,
it is useful as a first approximation to assume the fluctuating
excitation pressure to be uniformly distributed over (one surface
of) a flap element, and to consider only the response of the first
mode of that element modeled as a uniform beam — in a similar man-
ner somewhat analogous to that used in skin-stringer panel analyses
or honeycomb sandwich panel analyses (Ref. 9).

The resonance frequency of the first mode of a beam 1s given
(e.g., Ref. 22) by*¥*

_ 01 B
A (55)

*¥*This expression is based on the assumption that shear effecls are
negligible. As shown in Appendix B, the finite shear stiffness
of a beam reduces its natural frequency, but in most oractical
cases this reduction is insignificant.
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of cycles that a stringer survives before falling is related to
the experimentally observed maximum rms stress o, in it accord-
ing to

g
_ e
log N_ = ~2.74 1og(0 > + log By (50)
ref
where Opep = 103 psi is a reference stress value as before, and
‘6.98 ~95%
log BS =/77.57 for the -50% Confidence limit . (51)
l7.9u 0%

Equations (50) and (51) may also ve rewritten as

. = 2.7
N, = B (0 /0 ) , (52)
9.5 x 10°® -95%
Bs ={3.7 x 107 for the -50% Confidence limit . (53)
8.7 x 107 0%

The discussion and the relation between confidence limits
and failure probability presented (in relation to vanel failures)
in the paragraphs following Eg. (46) apply equally well to string-
er failures, as dcoes the discussion of fatigue 1life. 1In analogy
to Eq. (47), the stringer fatigue life T corresvonding to the

: .. sC
-C% confidence limit obeys

Tge = Nyo/T s (54)

where Nge is found from Eq. (50) or (52) for the confidence limit
of interest and f, it should be recalled, denotes the natural
frequency of the panel.
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4. Calculate N, from Eq. (45) or (43), and find 7, from
Eq. (47).

5. For materials other than 7075-T6 aluminum, multiply 7.
by k_ from Appendix C. 7

Stringers

In typical skin-stringer structures, fatigue failures of
stringers usually occur at the clip attachment (where the stringer
is joined to the frame or bulkhead), because of the presence of
stress railsers in that location. Because of the general complex-
ity of the problem, little analytical work has been done on
stringer fatigue, and since stringer fallures generally occur in
the interior of practical structures, there appears to exist no
quantitative field data. Reference 7 contains the most defini-
tive available analytical and experimental iInformation; it 1s on
that report that the following discussion i1s based.

Analytical estimate of maximum root-mean-sguare stress. -
The analysis of stringer stresses presented in Ref. 7 1is based on
the following assumptions: (1) The total force acting on a stringer
corresponds to the net shear force (integrated distribution minus
corner reactions) that acts at the edge of a simply supported
panel, which is deflecting in its first mode, in response to a
pressure that is uniformly distributed over the panel, but vary-
ing randomly in time. (2) The force acting on a stringer 1is dis--
tributed uniformly along its length and acts on the rivet line.
(3) The maximum stress in the stringer occurs in flexure at the
clip attachment point, where the stringer is taken to be clamped
with respect to bending.

With these assumptions one finds that the maximum root-mean--
square stress in a stringer obeys¥

_ _S _S
O = =77 7T B

3m a

3, Hb? o _(f b a \~!
2/2 S p < S ) (‘48)
T] 3
S S

where b_ denotes the stringer length (which is usually, but not
necessarily always, the longer panel edge length), ag the distance

¥This relation follows from Eg. (67) of Ref. 7. However, there

the numerical coefficient, which here is 234 3W7é ~ 0.0171, was
erronecusly omltted.
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It should be noted, however, that alr flow alcng a panel may
extract energy from the panel vibrations, and thus increase the
effective structural loss factor — or that thils flow may feed
energy into panel vibrations (under conditions approaching panel
flutter), and thus decrease the effective loss factor. At pre-
sent there 1s available no means for estimating this effect, and
one can do little better than to evaluate it on the basis of
experimental measurements.

Cycles to failure; survival probability. — One may exvect
that the number of stress reversals a panel can withstand de--
creases as the stress amplitude increases. Related test data,
corresponding to skin-stringer panels of 7075-T6 aluminum alloy
exposed to random noise, are given in Fig. 34 of Ref. 9, together
with curves representing various statistical confidence limits.
Later test data (Ref. 7) were found to fall within these same
confidence limits; the design nowmographs given in Refs., 7 and 9
are based cn these confidence limit curves.

From the curves of the above-mentioned Fig. 34 of Ref. 9 one
may determine that the number N of cycles that a panel survives
before failing is related to the maximum root-mean-sgnare stress
o according to

log N = 4,60 log(O g ) + log B , (43)
ref
where Orer = 10° psi is a reference stress value, and
9.38 -95%
log B =¢9.75 for the -50% % Confidence limits . (ukh)
0.04 0%

Alternately, one may express the above relation as

N = B(c/oref)"“6° (45)
with
\2.11 x 10° -95%
B =+¢5.6x 10° for the <{ ~50% » Confidence limit . (L46)
10.8 x 10° 0%
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1.18 of Eg. (39) indicates that the stress estimates one obtains
by use of Ea. (41) on the average are about 30% lower than those
one obtains on the basis of Eg. (39), and, similarly, to be about
20% lower than those one finds from Eq. (40).

It is important to note, however, that Eq. (41) was derived
on the basis of experimental data (Ref. 9) on test panels with
aspect ratios a/b between 1.0 and 3.0 only, so that the validity
of this relation for larger aspect ratios remains uncertain.
Furthermore, the test data points (see Fig. 69, p. 138 of Ref., 9)
exhibit a good deal of scatter, with a large number of the points
deviating considerably from the regression line., It thus is not
clear whether the use of the somewhat more complex Eq. (41) is
justified instead of Eq. (39) with a reduced coefficient that
makes this enquation correspond more closely to the available data
for b/a < 3.0,

In view of the fact that Eg. (41, has gained some accep-
tance, has been reduced to nomograph form, and has been com-
pared with some experimental data (tuough nct well docu-
mented) other than that on the basis of which 1t was derived,
it seems logical to retain it for stress estimation purposes,
However, for the purpose of studying trends and parametric de-
pendences, the simpler Eq. (39), with the coefficient 1.18 re-
placed by 0.90, is 1likely to be advantageous.

Maximum root-mean-square stress in curved panels. — On the
basls of analvtically developed expressions, in which empirically
derived corrections have been included, the maximum root-mean-
square stress or (at the middle of the straight edge) in a cy-
lindrically curved panel with radius of curvature R has been
found (Ref. 9,7) to be related to the corresponding stress in a
similar flat panel as

o £ -4

2 2

R . {..3 1+ o.u53(——2R)( AZ + 0.03% , (42)
A + 9,.62A% + 1

by

where, as before, A = b/a = length of curved edge/length of
stralght edge and f/fy is given by Eg. (37).

The applicability of this relation is limited to
0.3 < b/a < 3.0, a/h > 100, and a/R £ 0.35. On the whole,
stress estimates for curved panels obtained on the basis of Eg.
(L2) or corresponding nomographs correlate more poorly with
test data than do similar estimates for flat panels (e.g., see
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Resonance frequencies of cylindrically curved panels., — The
fundamental natural frequency fr of a cylindrically curved panel
with radius of curvature R is related to the natural frequency f

of*a flat panel with the same thickness h and edge dimensions
as

14

f 2 2
R .
= s 1 4 0.006(b*/hR) , (37)

A* + 0.61A°% + 1

where A = b/a,and a denotes the length of the flat edge of the
panel, and b the length of its curved edge. The above relation
was developed semi-emplrically, on the basis of experimental
data on structures with realistic boundary conditions, and 1is
valid onlv for h/a < 1/100 and for aspect ratios in the range
0.3 < b/a < 3.0, and for a/R < 0,35,

Maximum root-mean-square stress in flat panels., — In a
simply supported panel, the maximum flexural stress assoclated
with uniform loading or with the first vibreatory mocde occurs at
the vanel center. In a rectanguliar panel that 1s clamped on all
edges, the corresponding maximum stress occurs at the middle of
the longer edge. In practical skin-stringer structures, panel
fatigue failures tyvpically occur along the edges, at the rivet
line or at the ends of stringer flanges or doublers (Refs., 9,
17); thus,the panel stress associated with fatigue corresponds
more closely to the maximum stress in a clamped panel than to
that in a simply suppnorted panel.

The maximum flexural stress Oy induced in a clamped panel
with b > a by a uniformly distributed static pressure of unit
magnitude is given (Ref. 9) by

o - 12 (9)2 e (38)

0 max > \h
L

where F = F(b/a) is given by Eq. (32).

If one substitutes the foregoing for 6o into Eg. (29), and
if one takes the natural frequency f to be equal to that for a
clamned nlate, one cbtains the maximum rms stress as

y
s = 1.185 4 Lot (E)szr% (39)
an h :

#This expression results from Ref, 9, if a misprint 1in that
report 1is corrected (see Ref, 12). Note: The expression appear-
ing in Ref. 7 also 1s oovicusly in error.
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that they give results whose precision is much greater than
necessary, in view of the considerable uncertainty in (1) the
estimated pressure spectra, (2) the validity in any practical
case of the assumptions involved in the develonment of Eq. (29),
and (3) the boundary conditions operative in practical struc-
tures. Furthermore, fatigue data have been accumulated only
for the lowest modes, so that application of this data to fa-
tigue prediction for any given structure of a material or con-
figuration different from those for which data is available,or
to higher modes, is 1likely to introduce greater errors than
those due to the use of simpler, less precise, resonance fre-
quency estimates,

Many measurements of the random responses of panels (e.g.,
Refs. 6, 9—-12) have shown these responses to be dominated by
the fundamental panel mode. Data on realistic aircraft struc-
tures (e.g., Refs., 13, 14) and related analyses (summarized in
Ref. 8) have indicated that the responses of skin-stringer con-
figurations generally¥* are dominated by modes in which each pan-
el vibrates in a fundamental mode corresponding to a boundary
condition (at each edge) that lies between the fully clamped
and the simply supported., It is therefore reasonable to focus
on the fundamental panel mode, and to omit the more complex
higher modes from consideration.

Reference 9§ presents (on p. 224) a curve that summarizes
the experimentally observed variation with aspect ratio of the
fundamental resonance frequencies of rectangular panels of skin-
stringer configurations. Although one mayv use this curve for
estimation purposes, an analytic approximation to it will prove
useful for determining how the fatigue life of the panel depends
on the various parameters., Inspection of this curve, together
with the corresponding curves for panels that are simplyv sup-
ported and for panels that are clamped on all four edges, re-
veals that the experimentally observed frequencies are very
nearly equal to the geometric average of the resonance frequen-
cies for the two ideal boundary condition cases.

The fundamental resonance of a simply supported panel of
thickness h and edge lengths a and b is given by

*However, some data are available (Refs, 15, 16) which
show that the fundamental panel mode response does not always
predominate,
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